Abstract

There is interest in the prediction of the top-of-the-atmosphere (TOA) reflectance of the ocean–atmosphere system for in-orbit calibration of ocean color sensors. With the use of simulations, we examine the accuracy one could expect in estimating the reflectance ρT of the ocean–atmosphere system based on a measurement suite carried out at the sea surface, i.e., a measurement of the normalized sky radiance ρB and the aerosol optical thickness (τa), under ideal conditions—a cloud-free, horizontally homogeneous atmosphere. Briefly, ρB and τa are inserted into a multiple-scattering inversion algorithm to retrieve the aerosol optical properties—the single-scattering albedo and the scattering phase function. These retrieved quantities are then inserted into the radiative transfer equation to predict ρT. Most of the simulations were carried out in the near infrared (865 nm), where a larger fraction of ρT is contributed by aerosol scattering compared with molecular scattering, than in the visible, and where the water-leaving radiance can be neglected. The simulations suggest that ρT can be predicted with an uncertainty typically ≲1% when the ρB and τa measurements are error free. We investigated the influence of the simplifying assumptions that were made in the inversion-prediction process, such as modeling the atmosphere as a plane-parallel medium, using a smooth sea surface in the inversion algorithm, using the scalar radiative transfer theory, and assuming that the aerosol was confined to a thin layer just above the sea surface. In most cases, these assumptions did not increase the error beyond ±1%. An exception was the use of the scalar radiative transfer theory, for which the error grew to as much as ~2.5%, suggesting that the use of ρB inversion and ρT prediction codes that include polarization would be more appropriate. However, their use would necessitate measurement of the polarization associated with ρB. We also investigated the uncertainty introduced by an unknown aerosol vertical structure and found it to be negligible if the aerosols were nonabsorbing or weakly absorbing. An extension of the analysis to the blue, which requires measurement of the water-leaving radiance, showed significantly better predictions of ρT because the major portion of ρT is the result of molecular scattering, which is known precisely. We also simulated the influence of calibration errors in both the Sun photometer and the ρB radiometer. The results suggest that the relative error in the predicted ρT is similar in magnitude to that in ρB (actually it was somewhat less). However, the relative error in ρT induced by error in τa is usually much less than the relative error in τa. Currently, it appears that radiometers can be calibrated with an uncertainty of ~±2.5%, therefore it is reasonable to conclude that, at present, the most important error source in the prediction of ρT from ρB is likely to be error in the ρB measurement.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, “A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981) pp. 257–266.
    [CrossRef]
  2. H. R. Gordon, “Reduction of error introduced in the processing of coastal zone color scanner-type imagery resulting from sensor calibration and solar irradiance uncertainty,” Appl. Opt. 20, 207–210 (1981).
    [CrossRef] [PubMed]
  3. P. Koepke, “Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat,” Appl. Opt. 21, 2845–2854 (1982).
    [CrossRef] [PubMed]
  4. M. Viollier, “Radiance calibration of the Coastal Zone Color Scanner: a proposed adjustment,” Appl. Opt. 21, 1142–1145 (1982).
    [CrossRef] [PubMed]
  5. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  6. H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, D. K. Clark, “Nimbus 7 CZCS: reduction of its radiometric sensitivity with time,” Appl. Opt. 22, 3929–3931 (1983).
    [CrossRef] [PubMed]
  7. W. A. Hovis, J. S. Knoll, G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft sensor,” Appl. Opt. 24, 407–410 (1985).
    [CrossRef] [PubMed]
  8. R. S. Fraser, Y. J. Kaufman, “Calibration of satellite sensors after launch,” Appl. Opt. 25, 1177–1185 (1986).
    [CrossRef] [PubMed]
  9. P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
    [CrossRef]
  10. R. Frouin, C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels,” Remote Sensing Environ. 22, 73–101 (1987).
    [CrossRef]
  11. Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection,” Int. J. Remote Sensing 14, 21–52 (1993).
    [CrossRef]
  12. S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
    [CrossRef]
  13. P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
    [CrossRef]
  14. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).
  15. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
    [CrossRef]
  16. M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993).
    [CrossRef] [PubMed]
  17. E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” AFGL-TR-79-0214 (Air Force Geophysics Laboratory, Hanscomb Airforce Base, Mass., 1979).
  18. P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
    [CrossRef]
  19. G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
    [CrossRef]
  20. Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
    [CrossRef]
  21. T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
    [CrossRef] [PubMed]
  22. K. J. Voss, G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).
    [CrossRef]
  23. S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).
  24. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  25. K. Ding, H. R. Gordon, “Atmospheric correction of ocean color sensors: effects of Earth curvature,” Appl. Opt. 33, 7096–7106 (1994).
    [CrossRef] [PubMed]
  26. G. W. Kattawar, G. N. Plass, S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1. Radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976).
    [CrossRef] [PubMed]
  27. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
    [CrossRef] [PubMed]
  28. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), p. 739.
  29. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.
  30. P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
    [CrossRef]

1995 (2)

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

1994 (4)

K. Ding, H. R. Gordon, “Atmospheric correction of ocean color sensors: effects of Earth curvature,” Appl. Opt. 33, 7096–7106 (1994).
[CrossRef] [PubMed]

S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
[CrossRef]

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

1993 (3)

M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993).
[CrossRef] [PubMed]

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection,” Int. J. Remote Sensing 14, 21–52 (1993).
[CrossRef]

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

1990 (1)

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

1989 (2)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

K. J. Voss, G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).
[CrossRef]

1988 (1)

1987 (2)

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

R. Frouin, C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels,” Remote Sensing Environ. 22, 73–101 (1987).
[CrossRef]

1986 (1)

1985 (1)

1983 (3)

1982 (2)

1981 (1)

1976 (1)

1954 (1)

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

Biggar, S. F.

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
[CrossRef]

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Bréon, F. M.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Bricaud, A.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Broenkow, W. W.

Browell, E. V.

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

Brown, J. W.

Brown, O. B.

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Buriez, J. C.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Clark, D. K.

Cox, C.

Deluisi, J. J.

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

Deschamps, P. Y.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Ding, K.

Eck, T. F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

Evans, R. H.

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” AFGL-TR-79-0214 (Air Force Geophysics Laboratory, Hanscomb Airforce Base, Mass., 1979).

Fraser, R. S.

Frouin, R.

R. Frouin, C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels,” Remote Sensing Environ. 22, 73–101 (1987).
[CrossRef]

Gautier, C.

R. Frouin, C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels,” Remote Sensing Environ. 22, 73–101 (1987).
[CrossRef]

Gellman, D. I.

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
[CrossRef]

Gordon, H. R.

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

Hitzfelder, S. J.

Holben, B. N.

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection,” Int. J. Remote Sensing 14, 21–52 (1993).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Holm, R. G.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

Hovis, W. A.

Ignatov, A. M.

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

Ismail, S.

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

Jackson, R. D.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Kattawar, G. W.

Kaufman, Y.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Kaufman, Y. J.

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection,” Int. J. Remote Sensing 14, 21–52 (1993).
[CrossRef]

R. S. Fraser, Y. J. Kaufman, “Calibration of satellite sensors after launch,” Appl. Opt. 25, 1177–1185 (1986).
[CrossRef] [PubMed]

Kim, Y.

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

Knoll, J. S.

Koepke, P.

Kooi, S. A.

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

Korotaev, G. K.

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

Kreiner, F. W.

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Leroy, M.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Mao, Y.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

McClain, C. R.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

McClain, E. P.

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

Moran, M. S.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Munk, W.

Nakajima, T.

T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
[CrossRef] [PubMed]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Nowicki, G. D.

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

O’Neill, N. T.

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

Palmer, J. M.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Plass, G. N.

Podaire, A.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Reagan, J.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Reddy, P. J.

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

Sakerin, S. M.

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Sèze, G.

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” AFGL-TR-79-0214 (Air Force Geophysics Laboratory, Hanscomb Airforce Base, Mass., 1979).

Slater, P. N.

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
[CrossRef]

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Slutsker, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Smirnov, A. V.

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

Smith, G. R.

Smyshlyaev, S. P.

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

Spyak, P. R.

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

Stowe, L. L.

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

Tanaka, M.

Tanre, D.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Thome, K. J.

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), p. 739.

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

Villevalde, Y. V.

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

Viollier, M.

Voss, K. J.

K. J. Voss, G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).
[CrossRef]

Wang, M.

Yakovlev, V. V.

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

Yamauchi, T.

Yuan, B.

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Zibordi, G.

K. J. Voss, G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).
[CrossRef]

Appl. Opt. (12)

H. R. Gordon, “Reduction of error introduced in the processing of coastal zone color scanner-type imagery resulting from sensor calibration and solar irradiance uncertainty,” Appl. Opt. 20, 207–210 (1981).
[CrossRef] [PubMed]

P. Koepke, “Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat,” Appl. Opt. 21, 2845–2854 (1982).
[CrossRef] [PubMed]

M. Viollier, “Radiance calibration of the Coastal Zone Color Scanner: a proposed adjustment,” Appl. Opt. 21, 1142–1145 (1982).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, D. K. Clark, “Nimbus 7 CZCS: reduction of its radiometric sensitivity with time,” Appl. Opt. 22, 3929–3931 (1983).
[CrossRef] [PubMed]

W. A. Hovis, J. S. Knoll, G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft sensor,” Appl. Opt. 24, 407–410 (1985).
[CrossRef] [PubMed]

R. S. Fraser, Y. J. Kaufman, “Calibration of satellite sensors after launch,” Appl. Opt. 25, 1177–1185 (1986).
[CrossRef] [PubMed]

M. Wang, H. R. Gordon, “Retrieval of the columnar aerosol phase function and single scattering albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32, 4598–4609 (1993).
[CrossRef] [PubMed]

T. Nakajima, M. Tanaka, T. Yamauchi, “Retrieval of the optical properties of aerosols from aureole and extinction data,” Appl. Opt. 22, 2951–2959 (1983).
[CrossRef] [PubMed]

K. Ding, H. R. Gordon, “Atmospheric correction of ocean color sensors: effects of Earth curvature,” Appl. Opt. 33, 7096–7106 (1994).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1. Radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988).
[CrossRef] [PubMed]

Global Biogeochem. Cycles (1)

P. J. Reddy, F. W. Kreiner, J. J. Deluisi, Y. Kim, “Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 global change expedition,” Global Biogeochem. Cycles 4, 225–240 (1990).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (2)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sensing 27, 145–152 (1989).
[CrossRef]

P. Y. Deschamps, F. M. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Sèze, “The POLDER Mission: Instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing 32, 598–615 (1994).
[CrossRef]

Int. J. Remote Sensing (1)

Y. J. Kaufman, B. N. Holben, “Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint, and desert reflection,” Int. J. Remote Sensing 14, 21–52 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (3)

G. K. Korotaev, S. M. Sakerin, A. M. Ignatov, L. L. Stowe, E. P. McClain, “Sunphotometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Oceanic Technol. 10, 725–735 (1993).
[CrossRef]

K. J. Voss, G. Zibordi, “Radiometric and geometric calibration of a visible spectral electro-optic “fisheye” camera radiance distribution system,” J. Atmos. Oceanic Technol. 6, 652–662 (1989).
[CrossRef]

P. N. Slater, S. F. Biggar, K. J. Thome, D. I. Gellman, P. R. Spyak, “Vicarious radiometric calibration of EOS sensors,” J. Atmos. Oceanic Technol. 13, 349–359 (1995).
[CrossRef]

J. Geophys. Res. (1)

Y. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and North Atlantic,” J. Geophys. Res. 99D, 20983–20988 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Remote Sensing Environ. (3)

S. F. Biggar, P. N. Slater, D. I. Gellman, “Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4 to 1.1 μm range,” Remote Sensing Environ. 48, 245–252 (1994).
[CrossRef]

P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, B. Yuan, “Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

R. Frouin, C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5, and GOES-6 VISSR/VAS solar channels,” Remote Sensing Environ. 22, 73–101 (1987).
[CrossRef]

Trans. Am. Geophys. Union (1)

S. Ismail, E. V. Browell, S. A. Kooi, G. D. Nowicki, “Simultaneous LASE and LITE aerosol profile measurements over the Atlantic,” Trans. Am. Geophys. Union 76, S71 (1995).

Other (5)

H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980), p. 739.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, “Automatic Sun and sky scanning radiometer system for network aerosol monitoring,” Remote Sensing Environ, in press.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” NASA Tech. Memo. 104566 (July1992).

H. R. Gordon, “A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981) pp. 257–266.
[CrossRef]

E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties,” AFGL-TR-79-0214 (Air Force Geophysics Laboratory, Hanscomb Airforce Base, Mass., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Basic idea behind vicarious calibration. TOA and BOA are, respectively, the top and bottom of the atmosphere. L T and L B are the radiances measured at the TOA and BOA for a solar zenith angle θ0. In the geometry shown, the single-scattering angle Θ is common to both L T and L B .

Fig. 2
Fig. 2

Scattering phase functions for the Shettle and Fenn17 maritime aerosol model with a relative humidity of 99% (M99) and the tropospheric model with relative humidity 50% (T50).

Fig. 3
Fig. 3

Error in the retrieved ω0 P(Θ) for the M99 model if the single-scattering approximation was the correct physics for radiative transfer.

Fig. 4
Fig. 4

Error in the retrieved ω0 P(Θ) for the M99 model when multiple scattering is included in the radiative transfer.

Fig. 5
Fig. 5

Error in the estimated ρ T as a function of θ T when single scattering was assumed to be the correct radiative transfer physics. The error in ω0 P(Θ) for this case is provided in Fig. 3. We assumed there was no contribution from molecular scattering to ρ B or ρ T .

Fig. 6
Fig. 6

(a) Comparison between the aerosol phase function retrieved (circles) from ρ B at 865 nm and the true phase function (curve) when θ0 = 60° for the M99 model with τ a = 0.20 and Θmin = 0.92°. (b) Error in estimation of ρ T by use of the retrieved phase function in (a) with θ0 = 60°. (c) Same as (b) except θ0 = 50°. (d) Same as (c) except θ0 = 45°. In Figs. (b)–(d), the curves from the bottom to the top of the figures correspond to the use of τ a = 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, and 0.26 in both the retrieval and prediction codes.

Fig. 7
Fig. 7

Error in ρ T induced by a ±5% error in the measurement of ρ B . The measurement of τ a is assumed to be error free. The retrieval of ω0 P(Θ) is carried out when θ0 = 60°; the predictions are made when (a) θ0 = 60°, (b) θ0 = 50°, (c) θ0 = 45°.

Fig. 8
Fig. 8

Same as Fig. 6 except that Θmin = 2.62°.

Fig. 9
Fig. 9

Same as Fig. 6 except that Θmin = 8.68°.

Fig. 10
Fig. 10

Same as Fig. 6 except that Θmin = 17.33°.

Fig. 11
Fig. 11

Error in ρ T for a two-layer atmosphere with aerosol in both layers. Both the retrieval and prediction codes assume that the aerosol is only in the lower layer and, they use the correct value of τ a = τ T + τ B . R indicates Rayleigh and A indicates aerosol. (a) θ0 = 60°, (b) θ0 = 50°, (c) θ0 = 45°.

Fig. 12
Fig. 12

Same as Fig. 11 except that the retrieval and prediction codes use the correct vertical structure in τ a .

Fig. 13
Fig. 13

Same as Fig. 6 showing the effect of sea surface roughness. W indicates wind speed. The retrieval code assumes W = 0, whereas the prediction code uses the correct value of W.

Fig. 14
Fig. 14

Same as Fig. 13 showing the effect of the curvature of the Earth’s atmosphere. Retrieval and prediction codes assume a plane-parallel atmosphere.

Fig. 15
Fig. 15

Same as Fig. 14 showing the effect of ignoring polarization in the retrieval and prediction codes. (a) Θmin = 0.92°, (b) Θmin = 2.62°.

Fig. 16
Fig. 16

Same as Fig. 6 except that the wavelength is 443 nm.

Fig. 17
Fig. 17

Same as Fig. 16 except that Θmin is increased from 0.92° to 2.62°.

Fig. 18
Fig. 18

Error in the predicted ρ T at 443 nm for a ±5% error in ρ B for Θmin = 0.92° (solid lines) and Θmin = 2.62° (dashed lines). Positive (negative) errors in ρ T correspond to positive (negative) errors in ρ B .

Fig. 19
Fig. 19

Error in the predicted ρ T when the phase function is truncated at Θmin and the value of τ a , measured with a Sun photometer of half-angle field-of-view Θmin, is used in the retrieval and prediction codes. τ a = 0.187, 0.162, 0.122, and 0.92 for the curves from top to bottom, corresponding to Θmin = 0.92°, 2.62°, 8.68°, and 17.33°.

Tables (2)

Tables Icon

Table 1 Retrieved ω0 for a Given τ a a

Tables Icon

Table 2 Retrieved ω0 for a Given Θmin and τ a a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ T ( θ T ) = ω 0 P ( Θ ) τ a 4 cos θ T cos θ 0 , ρ B ( θ B ) = ω 0 P ( Θ ) τ a 4 cos θ B cos θ 0 ,
cos θ T ρ T ( θ T ) = cos θ B ρ B ( θ B ) ,
ρ B ( θ B ) = ω 0 τ a 4 cos θ B cos θ 0 [ P ( Θ ) + r ( θ 0 ) P ( Θ B r ) ] ,
ρ T ( θ T ) = ω 0 τ a 4 cos θ T cos θ 0 [ P ( Θ ) + [ r ( θ T ) + r ( θ 0 ) ] P ( Θ T r ) ] ,
τ a ( m ) τ a = α π P ( Θ ) sin Θ d Θ 0 π P ( Θ ) sin Θ d Θ .

Metrics