Abstract

The technique of Fabry–Perot CCD annular-summing spectroscopy, with particular emphasis on applications in aeronomy, is discussed. Parameter choices for optimizing performance by the use of a standard format CCD array are detailed. Spectral calibration methods, techniques for determining the ring pattern center, and effects imposed by limited radial resolution caused by superpixel size, variable by on-chip binning, are demonstrated. The technique is carefully evaluated experimentally relative to the conventional scanning Fabry–Perot that uses a photomultiplier detector. We evaluate three extreme examples typical of aeronomical spectroscopy using calculated signal-to-noise ratios. Predicted sensitivity gains of 10–30 are typical. Of the cases considered, the largest savings in integration time are estimated for the day sky thermospheric O1D case, in which the bright sky background dominates the CCD read noise. For profile measurements of faint night sky emission lines, such as exospheric hydrogen Balmer-α, long integration times are required to achieve useful signal-to-noise ratios. In such cases, CCD read noise is largely overcome. Predictions of a factor of 10–15 savings in integration time for night sky Balmer-α observations are supported by field tests. Bright, isolated night sky lines such as thermospheric O1D require shorter integration times, and more modest gains dependent on signal level are predicted. For such cases it appears from estimate results that the Fabry–Perot CCD annular-summing technique with a conventional rectangular format may be outperformed by a factor of 2–5 by special CCD formats or by unusual optical coupling configurations that reduce the importance of read noise, based on the ideal transmission for any additional optics used in these configurations.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
    [CrossRef] [PubMed]
  2. M. A. Biondi, “Improved Fabry–Perot interferometers: design considerations,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 245–249.
  3. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
    [CrossRef] [PubMed]
  4. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
    [CrossRef] [PubMed]
  5. R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
    [CrossRef]
  6. R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).
  7. F. L. Roesler, “The application of imaging detectors for Fabry–Perot spectroscopy,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 250–254.
  8. R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
    [CrossRef]
  9. S. Nossal, “Fabry–Perot observations of geocoronal hydrogen Balmer-α emissions,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, Wis., 1994).
  10. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, 1988).
  11. M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).
  12. M. M. Coakley, “Application of the CCD Fabry–Perot annular summing technique to thermospheric O1D,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, 1995).
  13. J. Wang, J. Wu, P. B. Hays, “University of Michigan ground-based circle-to-line Fabry–Perot interferometer and its application in mesosphere and lower thermosphere dynamics studies,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 133–142 (1994).

1994

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
[CrossRef] [PubMed]

R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

1991

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

1990

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

1983

Bahsoun-Hamade, F.

Baumgardner, J. L.

M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).

Biondi, M. A.

M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).

M. A. Biondi, “Improved Fabry–Perot interferometers: design considerations,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 245–249.

Ceckowski, D. H.

Coakley, M. M.

M. M. Coakley, “Application of the CCD Fabry–Perot annular summing technique to thermospheric O1D,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, 1995).

Harlander, J.

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

Hays, P. B.

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990).
[CrossRef] [PubMed]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

J. Wang, J. Wu, P. B. Hays, “University of Michigan ground-based circle-to-line Fabry–Perot interferometer and its application in mesosphere and lower thermosphere dynamics studies,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 133–142 (1994).

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, 1988).

Kennedy, B. C.

Killeen, T. L.

R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry–Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

Moise, A.

Niciejewski, R. J.

R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Nossal, S.

S. Nossal, “Fabry–Perot observations of geocoronal hydrogen Balmer-α emissions,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, Wis., 1994).

Peterson, R. N.

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

Reynolds, R. J.

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

Roesler, F. L.

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

F. L. Roesler, “The application of imaging detectors for Fabry–Perot spectroscopy,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 250–254.

Scherb, F.

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

Shepherd, G. G.

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
[CrossRef] [PubMed]

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

Sipler, D. P.

M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).

Symanow, D. A.

Turnbull, M.

R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Wang, J.

J. Wang, J. Wu, P. B. Hays, “University of Michigan ground-based circle-to-line Fabry–Perot interferometer and its application in mesosphere and lower thermosphere dynamics studies,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 133–142 (1994).

Wiens, R. H.

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
[CrossRef] [PubMed]

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

Wu, J.

J. Wang, J. Wu, P. B. Hays, “University of Michigan ground-based circle-to-line Fabry–Perot interferometer and its application in mesosphere and lower thermosphere dynamics studies,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 133–142 (1994).

Zhang, S.-P.

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

Zipf, M. E.

M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).

Appl. Opt.

Instrumentation in Astronomy VII

R. J. Reynolds, F. L. Roesler, F. Scherb, J. Harlander, “Fabry–Perot/CCD multichannel spectrometer for the study of warm, ionized interstellar gas and extragalactic clouds,” in Instrumentation in Astronomy VII, Proc. SPIE 1235, 610–620 (1990).

Opt. Eng.

R. J. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry–Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Planet. Space Sci.

R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a Mesophere Oxygen Rotational Temperature Imager,” Planet. Space Sci. 39, 1363–1375 (1991).
[CrossRef]

Other

S. Nossal, “Fabry–Perot observations of geocoronal hydrogen Balmer-α emissions,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, Wis., 1994).

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, 1988).

M. A. Biondi, M. E. Zipf, D. P. Sipler, J. L. Baumgardner, “ASDI (All-Sky Doppler Interferometer) determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 101–108 (1994).

M. M. Coakley, “Application of the CCD Fabry–Perot annular summing technique to thermospheric O1D,” Ph.D. dissertation (University of Wisconsin–Madison, Madison, 1995).

J. Wang, J. Wu, P. B. Hays, “University of Michigan ground-based circle-to-line Fabry–Perot interferometer and its application in mesosphere and lower thermosphere dynamics studies,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE 2266, 133–142 (1994).

M. A. Biondi, “Improved Fabry–Perot interferometers: design considerations,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 245–249.

F. L. Roesler, “The application of imaging detectors for Fabry–Perot spectroscopy,” in Coupled Energetics and Dynamics of Atmospheric Regions (CEDAR) Volume II: Detailed Facilities Development (Aeronomy Program of the National Science Foundation, Washington, D.C., 1986), pp. 250–254.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Wisconsin Fabry–Perot spectrometer configured for dual-étalon operation with medium resolution (R ≈ 80,000). Either the PMT or CCD mode can be selected by flipping the fold mirror and removing or inserting the aperture as necessary.

Fig. 2
Fig. 2

Graph of the dispersion relation of the Fabry–Perot, showing the nested, nonoverlapping, sequential resolution elements employed in the CCD annular-summing technique.

Fig. 3
Fig. 3

Plot of the square of the ring distance from the center of the annular pattern versus the spectral calibration interval as determined by the Michelson refractometer. The slope directly calibrates any area on the chip in terms of a spectral interval.

Fig. 4
Fig. 4

Filled circles represent the result of a single Gaussian fit with a linear background. The instrumental profile width can be seen to be fairly constant across the chip, increasing by only 3%.

Fig. 5
Fig. 5

Filled circles are the result of a simulation of larger on-chip binning, namely 3 × 3, 9 × 9, 15 × 15, and 21 × 21 (1 pixel = 20 × 20 μm). When W pix/W o = 1, the linewidth observed by the CCD, 4.03 ± 0.06 km/s, agrees with the linewidth observed by the PMT (filled square), 4.11 km/s, at the 2% level.

Fig. 6
Fig. 6

Filled circles represent the original images of the calibration set, showing ~3% increase in the instrumental profile from the center of the chip to the end of approximately ten resolution elements. The triangles are the same files after a software simulation of a 9 × 9 binning and show a 10% increase across the spectral range of interest on the chip. The open circles are the measured 3 × 3, 4 × 4, and 6 × 6 binnings. The measured 6 × 6 increases by 8% across the spectral range of interest; the measured 9 × 9 binning (not shown) increased by approximately 14%.

Fig. 7
Fig. 7

Geocoronal Hα emission measured with (a) a CCD and (b) a PMT in 15 min near 3:00 a.m. on 6 February 1992. The CCD image shows a signal-to-noise ratio of approximately 46.3, whereas the PMT image shows one of 11.8, for a savings in integration time of a factor of approximately 15.5.

Fig. 8
Fig. 8

Two histograms of the number of data points in each bin of a four-times-sampled resolution element. The 80 × 80 array (filled circles) represents the two pixels with two samples in the narrowest resolution element; the 40 × 40 array (open circles) represents the one-pixel width of the narrowest resolution element that has been double sampled. Here the centers of the images were taken to be x = 40.0, y = 40.0 and x = 20.0, y = 20.0 pixels, respectively. The 40 × 40 array (crosses) is the one-pixel-width sample case again, but with the center of the image at x = 19.75, y = 19.75.

Tables (3)

Tables Icon

Table 1 Comparison of Optimal CCD and PMT Modes

Tables Icon

Table 2 Comparisons of Real and Ideal CCD Performancesa

Tables Icon

Table 3 Comparison of Two Pixels in the Outermost Element (Optimal) and One Pixel in the Outermost Element (Superoptimal) Case for Three sets of CCD Chip Parametersa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

m / ( 2 μ l ) = σ cos θ ,
Δ σ σ = σ - σ 0 σ = θ 2 2 .
θ N = ( N ) θ 1 ,
Ω = π ( N θ 1 ) 2 - π [ ( N - 1 ) θ 1 ] 2 = π θ 1 2 = 2 π / R 0 .
r N = ( P s ) / 2 = ( N ) r 1 ,
N = P / 8
p = π ( r 1 / s ) 2 = π [ P / ( 2 N ) ] 2 = 16 π N .
N line = ( 0.8 ) I line × 10 6 4 π A 2 π R 0 δ λ Δ λ line ,
( S N ) PMT est = N line Q T / N [ ( N line Q T / N ) + ( N back Q T / N ) + ( N pdark T / N ) ] 1 / 2 ,
( S N ) CCD est = N line Q T [ ( N line Q T ) + ( N back Q T ) + ( N cdark T ) + R n 2 p ] 1 / 2 ,
F = R n 2 p ( N line Q T + N back Q T + N cdark ) T ,
( S / N ) CCD / ( S / N ) i = 1 / ( 1 + F ) ,
E CCD = 1 / ( 1 + F ) .
( S N ) PMT rec = S line d ( S line d + S back d + S pdark d ) 1 / 2 ,
( S N ) CCD rec = ( L c ) p [ ( L c ) p + ( B c ) p + ( D c J ) p + R n 3 p ] 1 / 2 ,
p = π ( P / N ) 2 = 4 π N .

Metrics