Abstract

The problem of estimating the return power in a laser integrated radar (lidar) system in the presence of multiplicative noise and partially unmodeled dynamics is explored. Several nonlinear methodologies are reviewed and compared to develop a systematic approach to signal model identification and estimation. The situations considered operate in mode-switching environments, that is, the desired unknown parameters are allowed to vary according to sudden jumps exhibiting discontinuous behavior at random times. Partitioning-based, parallel-structured techniques are shown to be significantly superior to the usual extended Kalman filter algorithm.

© 1996 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription