Abstract

We describe an all-optical programmable switch that can perform logic gate functions. This switch consists of a planar geometry germanium-doped silica waveguide, a Q-switched and mode-locked Nd:YAG laser, and the means of coupling laser light into different waveguiding modes of the thin film at the fundamental and second-harmonic frequencies. By the application of the appropriate optical programming sequence, the film-generated second-harmonic light can be made to perform the functionalities of various gates. In particular, a single waveguide was optically programmed to perform the or function and was then made to perform the and function with little change to the experimental arrangement.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985).
    [CrossRef]
  2. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
    [CrossRef]
  3. S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
    [CrossRef]
  4. G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, M. N. Islam, K. O. Hill, B. Malo, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
    [CrossRef] [PubMed]
  5. U. Osterberg, W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11, 516–518 (1986).
    [CrossRef] [PubMed]
  6. R. H. Stolen, H. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585–587 (1987).
    [CrossRef] [PubMed]
  7. V. Dominic, J. Feinberg, “Light-induced second-harmonic generation in glass via multiphoton ionization,” Phys. Rev. Lett. 71, 3446–3449 (1993).
    [CrossRef] [PubMed]
  8. B. Ya. Zel'dovich, A. N. Chudinov, “Interference of fields with frequencies ω and 2ω in external photoelectric effect” JETP Lett. 50, 439–441 (1989).
  9. E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
    [CrossRef]
  10. M. L. Brauer, I. Dajani, “Static electric fields due to seeding inside and outside of a planar waveguide,” J. Appl. Phys. 77, 970–975 (1995).
    [CrossRef]
  11. I. Dajani, D. J. Mcgillen, W. R. White, “Time-dependent optical nonlinearity in silica,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper NPdP10.
  12. D. Z. Anderson, V. Mizrahi, J. E. Sipe, “Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites,” Opt. Lett. 16, 796–798 (1991).
    [CrossRef] [PubMed]
  13. D. Marcuse, Theory of Dielectric Waveguides, 2nd ed. (Academic, New York, 1974), Chap. 2, p. 97.
  14. M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
    [CrossRef]
  15. I. Dajani, “Second-harmonic generation efficiencies in germanium-doped planar waveguides: a normal-mode analysis,” J. Mod. Opt. 42, 1329–1341 (1995).
    [CrossRef]
  16. J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
    [CrossRef]

1996

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

1995

G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, M. N. Islam, K. O. Hill, B. Malo, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
[CrossRef] [PubMed]

S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
[CrossRef]

M. L. Brauer, I. Dajani, “Static electric fields due to seeding inside and outside of a planar waveguide,” J. Appl. Phys. 77, 970–975 (1995).
[CrossRef]

M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
[CrossRef]

I. Dajani, “Second-harmonic generation efficiencies in germanium-doped planar waveguides: a normal-mode analysis,” J. Mod. Opt. 42, 1329–1341 (1995).
[CrossRef]

1993

V. Dominic, J. Feinberg, “Light-induced second-harmonic generation in glass via multiphoton ionization,” Phys. Rev. Lett. 71, 3446–3449 (1993).
[CrossRef] [PubMed]

1991

1989

B. Ya. Zel'dovich, A. N. Chudinov, “Interference of fields with frequencies ω and 2ω in external photoelectric effect” JETP Lett. 50, 439–441 (1989).

E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
[CrossRef]

1987

1986

1985

G. I. Stegeman, C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985).
[CrossRef]

1982

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

Ahn, K. H.

Anderson, D. Z.

Barnett, B. C.

Brauer, M. L.

M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
[CrossRef]

M. L. Brauer, I. Dajani, “Static electric fields due to seeding inside and outside of a planar waveguide,” J. Appl. Phys. 77, 970–975 (1995).
[CrossRef]

Chudinov, A. N.

B. Ya. Zel'dovich, A. N. Chudinov, “Interference of fields with frequencies ω and 2ω in external photoelectric effect” JETP Lett. 50, 439–441 (1989).

Dajani, I.

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

M. L. Brauer, I. Dajani, “Static electric fields due to seeding inside and outside of a planar waveguide,” J. Appl. Phys. 77, 970–975 (1995).
[CrossRef]

M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
[CrossRef]

I. Dajani, “Second-harmonic generation efficiencies in germanium-doped planar waveguides: a normal-mode analysis,” J. Mod. Opt. 42, 1329–1341 (1995).
[CrossRef]

I. Dajani, D. J. Mcgillen, W. R. White, “Time-dependent optical nonlinearity in silica,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper NPdP10.

Dianov, E. M.

E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
[CrossRef]

Dominic, V.

V. Dominic, J. Feinberg, “Light-induced second-harmonic generation in glass via multiphoton ionization,” Phys. Rev. Lett. 71, 3446–3449 (1993).
[CrossRef] [PubMed]

Feinberg, J.

V. Dominic, J. Feinberg, “Light-induced second-harmonic generation in glass via multiphoton ionization,” Phys. Rev. Lett. 71, 3446–3449 (1993).
[CrossRef] [PubMed]

Hill, K. O.

Islam, M. N.

Jensen, S. M.

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

Kazansky, P. G.

E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
[CrossRef]

Kester, J. J.

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
[CrossRef]

Malo, B.

Marcuse, D.

D. Marcuse, Theory of Dielectric Waveguides, 2nd ed. (Academic, New York, 1974), Chap. 2, p. 97.

Margulis, W.

Mcgillen, D. J.

I. Dajani, D. J. Mcgillen, W. R. White, “Time-dependent optical nonlinearity in silica,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper NPdP10.

Mizrahi, V.

Nakamura, S.

S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
[CrossRef]

Osterberg, U.

Pribyl, S.

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

Ranon, P. M.

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985).
[CrossRef]

Sipe, J. E.

Stegeman, G. I.

G. I. Stegeman, C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985).
[CrossRef]

Stepanov, D. Yu.

E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
[CrossRef]

Stolen, R. H.

Sugimoto, Y.

S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
[CrossRef]

Tajima, K.

S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
[CrossRef]

Tom, H. K.

Vaziri, M.

White, W. R.

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

I. Dajani, D. J. Mcgillen, W. R. White, “Time-dependent optical nonlinearity in silica,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper NPdP10.

Williams, G. R.

Zel'dovich, B. Ya.

B. Ya. Zel'dovich, A. N. Chudinov, “Interference of fields with frequencies ω and 2ω in external photoelectric effect” JETP Lett. 50, 439–441 (1989).

Appl. Phys. Lett.

S. Nakamura, K. Tajima, Y. Sugimoto, “High-repetition operation of a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 66, 2475–2477 (1995).
[CrossRef]

IEEE J. Quantum Electron.

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

J. Appl. Phys.

G. I. Stegeman, C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985).
[CrossRef]

M. L. Brauer, I. Dajani, “Static electric fields due to seeding inside and outside of a planar waveguide,” J. Appl. Phys. 77, 970–975 (1995).
[CrossRef]

J. J. Kester, P. M. Ranon, I. Dajani, S. Pribyl, W. R. White, “Modal properties of second-harmonic generation in doped-silica planar waveguides,” J. Appl. Phys. 79, 3385–3389 (1996).
[CrossRef]

J. Mod. Opt.

I. Dajani, “Second-harmonic generation efficiencies in germanium-doped planar waveguides: a normal-mode analysis,” J. Mod. Opt. 42, 1329–1341 (1995).
[CrossRef]

JETP Lett.

B. Ya. Zel'dovich, A. N. Chudinov, “Interference of fields with frequencies ω and 2ω in external photoelectric effect” JETP Lett. 50, 439–441 (1989).

Opt. Lett.

Phys. Rev. A

M. L. Brauer, I. Dajani, J. J. Kester, “Polarization dependence of second-harmonic generation in thin-film planar waveguides,” Phys. Rev. A 75, 705–709 (1995).
[CrossRef]

Phys. Rev. Lett.

V. Dominic, J. Feinberg, “Light-induced second-harmonic generation in glass via multiphoton ionization,” Phys. Rev. Lett. 71, 3446–3449 (1993).
[CrossRef] [PubMed]

Sov. J. Quantum Electron.

E. M. Dianov, P. G. Kazansky, D. Yu. Stepanov, “Problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989).
[CrossRef]

Other

I. Dajani, D. J. Mcgillen, W. R. White, “Time-dependent optical nonlinearity in silica,” in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 11 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper NPdP10.

D. Marcuse, Theory of Dielectric Waveguides, 2nd ed. (Academic, New York, 1974), Chap. 2, p. 97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram representations of the (a) and, (b) or, and (c) xor logic gates.

Fig. 2
Fig. 2

Experimental arrangement of the all-optical logic gate switch: F's, filters; L's, lenses; B's, optical delay lines.

Fig. 3
Fig. 3

Truth table timing diagram of the or gate. Inputs A and B correspond to the input IR beams; C corresponds to the output FGSH.

Fig. 4
Fig. 4

Truth table timing diagram of the and gate. Inputs A and B correspond to the input IR beams; C corresponds to the output FGSH.

Fig. 5
Fig. 5

FGSH intensity versus temporal delay between the two reading IR beams.

Tables (1)

Tables Icon

Table 1 Truth Table of and, or, and xor Gates

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = 3 χ ( 3 ) E dc ,
χ ( 2 ) ( E ω * E 2 2 ω + c . c . ) ,
E 2 ω , g ( y ) ( y , z , t ) = j a 2 ω , j ( z ) × ϕ 2 ω , j ( y ) exp [ i ( β 2 ω , j z 2 ω t ) ] ,
tan ( 2 b h 2 ω ) = n 2 ω , 0 2 h 2 ω ( n 2 ω , 1 2 p 2 ω + n 2 ω , 2 2 q 2 ω ) ( n 2 ω , 1 2 n 2 ω , 2 2 h 2 ω 2 n 2 ω , 0 4 p 2 ω q 2 ω ) ,
ϕ 2 ω , j = C 2 ω , j { n 2 ω , 1 2 h 2 ω , j n 2 ω , 0 2 q 2 ω , j cos [ h 2 ω , j ( y b ) ] + sin [ h 2 ω , j ( y b ) ] } .
K = b b χ ( 2 ) ϕ ω , r 2 ϕ 2 ω , s * exp [ i ( β 2 ω , s 2 β ω , r ) ] d y ,
K = b b | ϕ ω , m | 4 | ϕ 2 ω , n | 2 d y .
E ω ( y ) = E ω , 0 ( y ) + E ω , 1 ( y ) = A ω , 0 ϕ ω , 0 exp [ i ( β ω , 0 z ω t ) ] + A ω , 1 ϕ ω , 1 exp [ i ( β ω , 1 z ω t + δ ) ] ,
χ ( 2 ) A 2 ω , 0 ϕ 2 ω , 0 ( A ω , 0 * 2 ϕ ω , 0 * 2 exp [ 2 i ( β ω , 0 z ω t ) ] + 2 A ω , 0 * A ω , 1 * ϕ ω , 0 * ϕ ω , 1 * × exp { i [ ( β ω , 0 + β ω , 1 ) z 2 ω t ] } + A ω , 1 * 2 ϕ ω , 1 * 2 exp [ 2 i ( β ω , 1 z ω t ) ] ) × exp [ i ( β 2 ω , 0 z 2 ω t ) ] + c . c . ,
d a 2 ω , 0 d z = i Γ ω A 2 ω , 0 ( K 0 , 0 | A ω , 0 | 4 exp [ i ( β 2 ω , 0 2 β ω , 0 ) z ] + 4 K 0 , 1 | A ω , 0 | 2 | A ω , 1 | 2 exp { i [ β 2 ω , 0 ( β ω , 0 + β ω , 1 ) ] z } + K 1 , 1 | A ω , 1 | 4 exp [ i ( β 2 ω , 0 2 β ω , 1 ) z ] ) ,
K i , j = b b | ϕ ω , i | 2 | ϕ ω , j | 2 | ϕ 2 ω , 0 | 2 × exp { i [ β 2 ω , 0 ( β ω , i + β ω , j ) ] z } d y .
d a 2 ω , 0 d z = i Γ ω A 2 ω , 0 K 0 , 0 | A ω , 0 | 4 exp [ i ( β 2 ω , 0 2 β ω , 0 ) z ] .
χ ( 2 ) A 2 ω , 0 ϕ 2 ω , 0 { A ω , 0 * 2 ϕ ω , 0 * 2 exp [ 2 i ( β ω , 0 z ω t ) ] + A ω , 1 * 2 ϕ ω , 1 * 2 exp [ 2 i ( β ω , 1 z ω t ) ] } × exp [ i ( β 2 ω , 0 z 2 ω t ) ] + c . c .
d a 2 ω , 0 d z = i Γ ω A 2 ω , 0 { K 0 , 0 | A ω , 0 | 4 exp [ i ( β 2 ω , 0 2 β ω , 0 ) z ] + K 1 , 1 | A ω , 1 | 4 exp [ i ( β 2 ω , 0 2 β ω , 1 ) z ] } .
χ ( 2 ) A 2 ω , 0 ϕ 2 ω , 0 { A ω , 0 * 2 ϕ ω , 0 * 2 exp [ 2 i ( β ω , 0 z ω t ) ] + A ω , 1 * 2 ϕ ω , 1 * 2 exp [ 2 i ( β ω , 1 z ω t π / 2 ) ] } × exp [ i ( β 2 ω , 0 z 2 ω t ) ] + c . c .
d a 2 ω , 0 d z = i Γ ω A 2 ω , 0 ( K 0 , 0 | A ω , 0 | 4 exp [ i ( β 2 ω , 0 2 β ω , 0 ) z ] + K 1 , 1 | A ω , 1 | 4 exp { i [ ( β 2 ω , 0 2 β ω , 1 ) z π ] } ) .

Metrics