Abstract

We present the design of a 12 × 12 photonic crossbar interconnection network constructed using a single three-dimensional acousto-optic crystal. Previous crossbars based on bulk acousto-optic cells require multichannel deflectors with one deflector per optical input; in contrast the design presented here angularly multiplexes these independent deflectors into a single-transducer acousto-optic device. A Fourier-optics analysis of an acoustically lossy Bragg deflector is coupled to a momentum-space analysis that permits the derivation of complete design equations for the switch. As a concrete example, the complete design of a 12 × 12 crossbar is presented. Finally, a coupled-mode analysis of the first- and second-order diffractions in the angularly multiplexed Bragg cell reveals the fundamental efficiency bounds of the switching network.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  2. H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
    [CrossRef]
  3. R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.
  4. D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
    [CrossRef]
  5. A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).
  6. R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
    [CrossRef]
  7. M. Yamaguchi, T. Yamamoto, K.-I. Yukimatsu, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
    [CrossRef] [PubMed]
  8. M. Born, E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1959).
  9. R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989).
    [CrossRef]
  10. L. McCaughan, “Long wavelength titanium doped lithium niobate directional coupler optical switches and switch arrays,” Opt. Eng. 24, 241–243 (1985).
  11. L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
    [CrossRef]
  12. P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
    [CrossRef]
  13. P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991).
    [CrossRef]
  14. T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
    [CrossRef]
  15. Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
    [CrossRef]
  16. M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).
  17. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
    [CrossRef]
  18. D. O. Harris, A. Vanderlugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
    [CrossRef] [PubMed]
  19. D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245–4256 (1991).
    [CrossRef] [PubMed]
  20. D. O. Harris, A. VanderLugt, “Multichannel acousto-optic crossbar switch with arbitrary signal fan-out,” Appl. Opt. 31, 1684–1686 (1992).
    [CrossRef] [PubMed]
  21. E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990).
    [CrossRef]
  22. J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).
  23. S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
    [CrossRef]
  24. D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).
  25. D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
    [CrossRef]
  26. H. Laor, “Piezoelectric aparatus for positioning optical fibers,” U.S. Patent4,512,036, 16April1985.
  27. R. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).
  28. D. L. Hecht, “Spectrum analysis using acousto-optic devices,” Opt. Eng.461–466 (1977).
  29. W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).
  30. S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).
  31. J. Xu, R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).
  32. H. S. Hinton, An Introduction to Photonic Switching Fabrics, (Plenum, New York, 1993).
  33. I. C. Chang, “Design of wideband acousto-optic Bragg cells,” in Bragg Signal Processing and Output Devices, T. J. Kooij, B. V. Markevitch, eds., Proc. SPIE352, 34–41 (1983).
  34. G. Elston, “Optically and acoustically rotated slow shear Bragg cells in TeO2,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. SPIE936, 95–101 (1988).
  35. T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
    [CrossRef]
  36. P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).
  37. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990).
  38. D. L. Hecht, “Multifrequency acousto-optic diffraction,” IEEE Trans. Sonics Ultrason. 245, 7–18 (1977).
    [CrossRef]
  39. I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).
  40. K.-Y. Wu, “Acousto-optic fiber crossbar switches,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).
  41. M. Kufner, S. Kufner, P. Chavel, M. Frank, “Monolithic integration of microlens arrays and fiber holder arrays in poly(methyl methacrylate) with fiber self-centering,” Opt. Lett. 20, 276–278 (1995).
    [CrossRef] [PubMed]

1995

T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
[CrossRef]

M. Kufner, S. Kufner, P. Chavel, M. Frank, “Monolithic integration of microlens arrays and fiber holder arrays in poly(methyl methacrylate) with fiber self-centering,” Opt. Lett. 20, 276–278 (1995).
[CrossRef] [PubMed]

1994

M. Yamaguchi, T. Yamamoto, K.-I. Yukimatsu, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
[CrossRef] [PubMed]

Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
[CrossRef]

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
[CrossRef]

1992

R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
[CrossRef]

D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
[CrossRef]

D. O. Harris, A. VanderLugt, “Multichannel acousto-optic crossbar switch with arbitrary signal fan-out,” Appl. Opt. 31, 1684–1686 (1992).
[CrossRef] [PubMed]

1991

D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245–4256 (1991).
[CrossRef] [PubMed]

P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991).
[CrossRef]

1990

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990).
[CrossRef]

1989

R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989).
[CrossRef]

D. O. Harris, A. Vanderlugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
[CrossRef] [PubMed]

1988

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

1987

D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).

1985

L. McCaughan, “Long wavelength titanium doped lithium niobate directional coupler optical switches and switch arrays,” Opt. Eng. 24, 241–243 (1985).

L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

1983

I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).

1977

D. L. Hecht, “Multifrequency acousto-optic diffraction,” IEEE Trans. Sonics Ultrason. 245, 7–18 (1977).
[CrossRef]

D. L. Hecht, “Spectrum analysis using acousto-optic devices,” Opt. Eng.461–466 (1977).

1975

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990).

Banwell, T. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

Bergvall, K.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Blumenthal, D. J.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
[CrossRef]

Bogert, G. A.

L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1959).

Chang, I.

I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).

Chang, I. C.

I. C. Chang, “Design of wideband acousto-optic Bragg cells,” in Bragg Signal Processing and Output Devices, T. J. Kooij, B. V. Markevitch, eds., Proc. SPIE352, 34–41 (1983).

Chavel, P.

Chen, Q.

Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Cheng, S. S.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

Chiu, Y.

Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Dias, A.

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Dropps, F. R.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).

Duthie, P. J.

P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991).
[CrossRef]

Elston, G.

G. Elston, “Optically and acoustically rotated slow shear Bragg cells in TeO2,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. SPIE936, 95–101 (1988).

Falk, J.-E.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Feuerstein, R. J.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
[CrossRef]

Fischer, B.

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).

Fleming, D. L.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).

Frank, M.

Fukumoto, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Goodman, J.

R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
[CrossRef]

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).

Granestrand, P.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Guilfoyle, P.

P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).

Harris, D. O.

Hecht, D.

P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).

Hecht, D. L.

D. L. Hecht, “Multifrequency acousto-optic diffraction,” IEEE Trans. Sonics Ultrason. 245, 7–18 (1977).
[CrossRef]

D. L. Hecht, “Spectrum analysis using acousto-optic devices,” Opt. Eng.461–466 (1977).

S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).

Hesselink, L.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).

Hinton, H. S.

H. S. Hinton, An Introduction to Photonic Switching Fabrics, (Plenum, New York, 1993).

Huang, P. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

Johnson, K. M.

E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990).
[CrossRef]

Jordan, H.

H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
[CrossRef]

Kalman, R. F.

R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
[CrossRef]

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Kawabuchi, M.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Kazovsky, L.

R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
[CrossRef]

Krainak, M.

D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).

Kufner, M.

Kufner, S.

Lagerstrom, B.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Lam, D.

R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989).
[CrossRef]

Laor, H.

H. Laor, “Piezoelectric aparatus for positioning optical fibers,” U.S. Patent4,512,036, 16April1985.

Lee, D.

H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
[CrossRef]

Lee, K.

H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

MacDonald, R. I.

R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989).
[CrossRef]

Maniloff, E. S.

E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990).
[CrossRef]

McCaughan, L.

L. McCaughan, “Long wavelength titanium doped lithium niobate directional coupler optical switches and switch arrays,” Opt. Eng. 24, 241–243 (1985).

L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

McLeod, R.

R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.

McLeod, R. R.

R. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).

McRuer, R.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).

Nishimoto, H.

T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
[CrossRef]

Olofsson, H.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Pape, D. R.

D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
[CrossRef]

D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).

Petrie, G.

S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).

Reith, L. A.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

Sauer, J. R.

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
[CrossRef]

Sawano, T.

T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
[CrossRef]

Sawchuk, A.

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Segev, M.

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Stancil, D.

Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Steinmetz, D.

P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).

Stephens, W. E.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

Sternklar, S.

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

Stoltz, B.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Stroud, R.

J. Xu, R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).

Suzuki, S.

T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
[CrossRef]

Svensson, P.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

Teulkolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).

Thylen, L.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

VanderLugt, A.

Verrerling, W. T.

W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).

Wagner, K.

R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.

Wale, M. J.

P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991).
[CrossRef]

Wantanabe, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Wasilousky, P.

D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).

Weiss, S.

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

Weverka, R. T.

I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).

R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.

Wilde, J.

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).

Wilson, M. L.

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).

Wofford, S.

S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).

Wolf, E.

M. Born, E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1959).

Wu, K.

R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.

Wu, K.-Y.

K.-Y. Wu, “Acousto-optic fiber crossbar switches,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).

Xu, J.

J. Xu, R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).

Yamaguchi, M.

Yamamoto, T.

Yano, T.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Yukimatsu, K.-I.

Apl. Opt.

S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Apl. Opt. 27, 3422–3428 (1988).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 integrated-optical crossbar switch array,” Appl. Phys. Lett. 47, 348–350 (1985).
[CrossRef]

T. Yano, M. Kawabuchi, A. Fukumoto, A. Wantanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Electron. Lett.

P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, H. Olofsson, “Integrated optics 4 × 4 switch matrix with digital optical switches,” Electron. Lett. 26, 4–5 (1990).
[CrossRef]

P. J. Duthie, M. J. Wale, “16 × 16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265–1266 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

R. F. Kalman, L. Kazovsky, J. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048–1051 (1992).
[CrossRef]

D. J. Blumenthal, R. J. Feuerstein, J. R. Sauer, “First demonstration of multihop all-optical packet switching,” IEEE Photon. Technol. Lett. 6, 457–460, (1994).
[CrossRef]

IEEE Trans. Comput.

H. Jordan, D. Lee, K. Lee, “Serial array time slot inter-changers and optical implementations,” IEEE Trans. Comput. 43, 1309–1318 (1994).
[CrossRef]

IEEE Trans. Sonics Ultrason.

D. L. Hecht, “Multifrequency acousto-optic diffraction,” IEEE Trans. Sonics Ultrason. 245, 7–18 (1977).
[CrossRef]

IEEE Ultrason. Symp. Proc.

I. Chang, R. T. Weverka, “Multifrequency acousto-optic diffraction in wideband Bragg cells,” IEEE Ultrason. Symp. Proc. 2, 445–448 (1983).

J. Lightwave Technol.

T. Sawano, S. Suzuki, H. Nishimoto, “A high-capacity photonic space-division switching system for broadband networks,” J. Lightwave Technol. 13, 335–341 (1995).
[CrossRef]

Q. Chen, Y. Chiu, D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Opt. Eng.

L. McCaughan, “Long wavelength titanium doped lithium niobate directional coupler optical switches and switch arrays,” Opt. Eng. 24, 241–243 (1985).

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–190 (1990).
[CrossRef]

A. Dias, R. F. Kalman, J. Goodman, A. Sawchuk, “Fiber optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

D. R. Pape, “Multichannel Bragg cells: design, performance, and applications,” Opt. Eng. 31, 2148–2158 (1992).
[CrossRef]

E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnections using static holograms,” Opt. Eng. 29, 225–229 (1990).
[CrossRef]

D. L. Hecht, “Spectrum analysis using acousto-optic devices,” Opt. Eng.461–466 (1977).

Opt. Lett.

Opt. Quantum. Electron.

R. I. MacDonald, D. Lam, “Broadband matrix switches: electro-optic or optoelectronic,” Opt. Quantum. Electron. 18, 273–277 (1989).
[CrossRef]

Optical Technology for Microwave Applications III

D. R. Pape, P. Wasilousky, M. Krainak, “A high performance apodized phased array Bragg cell,” in Optical Technology for Microwave Applications III, Proc. SPIE 789, 116–126 (1987).

Other

J. Wilde, R. McRuer, L. Hesselink, J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 200–208 (1987).

W. H. Press, B. P. Flannery, S. A. Teulkolsky, W. T. Verrerling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1986).

S. Wofford, G. Petrie, D. L. Hecht, “Polarization effects in shear wave tellurium dioxide acousto-optic devices,” in Active Optical DevicesJ. Tracy, ed., Proc. SPIE202, 180–185 (1979).

J. Xu, R. Stroud, Acousto-Optic Devices (Wiley, New York, 1992).

H. S. Hinton, An Introduction to Photonic Switching Fabrics, (Plenum, New York, 1993).

I. C. Chang, “Design of wideband acousto-optic Bragg cells,” in Bragg Signal Processing and Output Devices, T. J. Kooij, B. V. Markevitch, eds., Proc. SPIE352, 34–41 (1983).

G. Elston, “Optically and acoustically rotated slow shear Bragg cells in TeO2,” in Advances in Optical Information Processing III, D. R. Pape, ed., Proc. SPIE936, 95–101 (1988).

H. Laor, “Piezoelectric aparatus for positioning optical fibers,” U.S. Patent4,512,036, 16April1985.

R. R. McLeod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).

P. Guilfoyle, D. Hecht, D. Steinmetz, “Joint-transform time-integrating acousto-optic correlator for chirp spectrum analysis,” in Active Optical Devices, J. Tracy, ed., Proc. SPIE202, 154–162 (1979).

B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, Malabar, Fla., 1990).

K.-Y. Wu, “Acousto-optic fiber crossbar switches,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1995).

M. Born, E. Wolf, Principles of optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1959).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

M. L. Wilson, D. L. Fleming, F. R. Dropps, “A fiber optic matrix switchboard using acousto-optic Bragg cells,” in Components for Fiber Optic Applications III and Coherent Light-wave Communications, P. M. Kopera, F. R. Sumak, eds., Proc. SPIE988, 56–62 (1988).

R. T. Weverka, K. Wagner, R. McLeod, K. Wu, “Low-loss acousto-optic photonic switch,” in N. J. Berg, J. M. Pelegrino, eds., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed., N. J. Berg, J. M. Pelegrino, eds., (Marcel Dekker, New York, 1995), pp. 479–573.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Space-division crossbar switches: (a) single channel and (b) multiple channel. In this most general interconnect, the inputs fibers (left-hand side) can be broadcast, combined, and arbitrarily permuted to the output fibers on the right-hand side. Bit-serial networks need only single-channel switches, as shown in (a), whereas the interconnection of multiple-bit (p = 4) buses requires either slaved single-channel crossbars for each bit or multiple-channel switches, as shown in (b).

Fig. 2
Fig. 2

Space-integrating matrix–vector multiplier approach to a reconfigurable optical crossbar interconnection network. Note that the output spot is necessarily N times larger than the fiber core, as expained in the text. (Figure reprinted with permission from Ref. 3, p. 483).

Fig. 3
Fig. 3

Diagram of a multistage network based on 2 × 2 switches. (Figure reprinted with permission from Ref. 3, p. 481).

Fig. 4
Fig. 4

Diagram of an acousto-optic crossbar that uses a multichannel Bragg cell. Note the inevitable mode mismatch of the focused spot and the output-fiber array manifested as an elliptical spot illumination of the fiber core. (Figure reprinted with permission from Ref. 3, p. 484).

Fig. 5
Fig. 5

(a) Schematic diagram of an acousto-optic crossbar switch built with a single-transducer Bragg cell. Note the absence of mode mismatch when the beam is focused onto the output-fiber array. (b) A simplified momentum-space plot of the acousto-optic interaction, revealing that the inputs are tangentially matched for a wide angular bandwidth, whereas the outputs are not, resulting in a narrow angular bandwidth. This situation results in the bandshapes shown in (c), which exhibit nonoverlapping input bands (curves) so that individual frequencies within each band (diamonds) uniquely deflect one input to one output.

Fig. 6
Fig. 6

Optics layout of a 4-f deflector system with a rectangular acousto-optic Bragg cell in the Fourier plane. The dashed curves show the 1/e contours of the optical intensity. The filled rectangles represent single-mode waveguides, although the analysis is equally valid for single transverse-mode free-space optics.

Fig. 7
Fig. 7

Incident Gaussian electric field (dashed curve), acoustic-decay profile (dotted curve), and resultant diffracted-field profile (solid curve) from an acoustically lossy Bragg cell for the parameters Ā = 1.92, α ̅ = 0.433 and x ̅ 0 = 0.77 . As described in the text, this beam placement maximizes the diffraction efficiency, which in this case is 2.5 dB less than the acousto-optic efficiency. [The intensity E is expressed in arbitrary units (au)].

Fig. 8
Fig. 8

Plot of the optimal normalized Gaussian beam center x ̅ 0 to yield the maximum diffraction efficiency versus the normalized crystal width Ā and normalized acoustic loss α ̅ . The contours, drawn both on the surface and above it, are rendered at multiples of 1/10. Note that for acoustically lossless devices ( α ̅ = 0 ) , the optics should be centered in the cell: x ̅ 0 = Ā / 2 . The parameters of the example rendered in Fig. 7 are shown by the small darker bar and its associated axis intercepts.

Fig. 9
Fig. 9

Maximum efficiency of a finite-width, acoustically lossy deflector versus the normalized width Ā and the normalized acoustic loss α ̅ of the device. Acoustically lossless devices are limited only by truncation, and the efficiency is ηTL = ηAO erf(Ā/2). The contours, drawn both on the surface and above it, are rendered at multiples of 1/10. The shaded contour shows the region of operation used to obtain a diffraction efficiency of at least ηAO/2. For comparison, the 3-dB design rule, exp ( Ā α ̅ ) = 0.5 plotted on the upper surface as a boldface curve. The parameters of the example rendered in Fig. 7 are shown by the dot and the associated axis intercepts.

Fig. 10
Fig. 10

Amplitude (solid curve) and phase (diamonds) of the electric-field profile at the output plane corresponding to the example Fourier-plane field rendered in Fig. 7. The dotted curve represents the output field from an unperturbed Gaussian in the Fourier plane, as well as the assumed shape of the waveguide mode. The correlation of these two profiles, as defined by Eq. (12), is 0.8, or −1 dB.

Fig. 11
Fig. 11

Coupling efficiency of the diffracted field to a waveguide with a Gaussian mode profile whose 1/e radius is r out. The coupling efficiency approaches one for a cell width of Ā > 3 and falls off dramatically for narrow cells. Note that coupling is not a strong function of the acoustic loss because the effect of the exponential acoustic loss is to shift the Gaussian optical beam in the Fourier plane but not to change its width. Thus the only dependence of the output coupling efficiency on α ̅ is due to the beam shift within the Bragg cell that produces a slight phase tilt, which in turn slightly reduces the efficiency.

Fig. 12
Fig. 12

Coupling efficiency to the neighboring waveguide (cross talk) plotted as a function of the acoustic loss and the cell width for increasing waveguide resolvability. The solid contours are drawn at intervals of 5 dB, and the dotted contours at 2.5-dB intervals.

Fig. 13
Fig. 13

Diagrams of the momentum-space method applied to the acousto-optic crossbar switch: The upper left diagram shows the entire monochromatic wave-vector space for TeO2, including the ordinary and extraordinary momentum surfaces. The lower left diagram details the interaction region near the z axis and shows the split generated by the optical activity and diffraction between inputs and outputs. The lower right image displays details of the output momentum surface showing the polarization uncertainty. In the upper right image is a real-space illustration of the rectangular polarization distribution.

Fig. 14
Fig. 14

Momentum space (k space) of the crossbar switch implemented in TeO2. Splitting of the ordinary and extraordinary k surfaces along the z axis is due to optical activity (plus birefringence if the crystal is optically rotated). The other axis of the diagram, [110], is the direction of the anomalously slow acoustic shear wave. For simplicity, the [110] direction is labeled x in the calculations shown in Section 3. (Figure reprinted with permission from Ref. 3, p. 518).

Fig. 15
Fig. 15

(a) The curvature of the input momentum surface is shown to limit the available angular range by Bragg-mismatching the diffraction as the angle increases. (b) A close-up diagram that illustrates the design constraint that this shift should cause a maximum of a 3-dB decrease in efficiency. (Figure reprinted with permission from Ref. 3, p. 520).

Fig. 16
Fig. 16

(a) Geometry of the Bragg mismatch of undesired couplings. (b) Detail of (a) showing a single acousto-optic grating meant to connect an input to the lowest output; this connection is shown by the 3-dB contour of the acousto-optic polarization (uncertainty) at the bottom of the image. Light from a neighboring input will also generate a diffracted optical wave by way of this same grating, as is shown by the upper uncertainty contour, which is spaced at an interval of Δkx, in above the first. The intersection of this acousto-optic polarization distribution and the output optical wave-vector surface determines the amount of Bragg mismatching that occurs with this undesired connection. (Figure reprinted with permission from Ref. 3, p. 522).

Fig. 17
Fig. 17

3-D view of optical rotation in TeO2: (a) The rotation of the plane of incidence around the acoustic column in real space and (b) the ordinary (inner) and highly exaggerated extraordinary (outer) optical wave-vector surfaces. In (b), for no optical rotation, the acoustic wave vector (boldface solid line) that connects the ordinary and extraordinary optical wave vectors (solid and dotted lines, respectively) skims across the pole of the ordinary surface; its length, and therefore the center acoustic frequency, is determined by only the optical activity that causes the optical surfaces to separate at the pole. In contrast, the tangentially matched acoustic wave vector in the rotated plane is lengthened as the optical surfaces separate as a result of birefringence. Because the plane of the acousto-optic interaction rotates around the fixed direction of acoustic propagation, this is referred to as optic rotation.

Fig. 18
Fig. 18

(a) Fourier-space and (b) real-space calculations of the acoustic diffraction and highly anisotropic walk-off in an acoustically rotated, TeO2 acousto-optic cell. The Poynting vector s is directed normal to the acoustic wave-vector surface, which causes 27° of walk-off when the crystal [110] axis is tilted 2.6° away from the acoustic column.

Fig. 19
Fig. 19

Momentum surface of the slow-shear mode in TeO2 showing the relevant curvatures for anisotropic diffraction, bxy and btz , as the acoustics are rotated from the [110] toward the [001] crystal axis. The curvature of the continuous (solid) ellipse is given by btz , whereas the three arcs that cross the continuous ellipse show the curvature bxy at three different points. Curvatures in both directions are highest in the unrotated [110] case and decrease as the acoustic-propagation direction is rotated away from the slow-shear lobe. (Figure reprinted with permission from Ref. 3, p. 528).

Fig. 20
Fig. 20

Excess curvatures bxy and btz of TeO2 plotted versus the acoustic rotation. The diamonds mark the locations of the arcs from Fig. 19.

Fig. 21
Fig. 21

Form of the second-order rediffractions in the acousto-optic crossbar, illustrated for a 5 × 5 switch (inputs 1 and 5 are deleted for clarity). The input beams are drawn in boldface; redifracted and satellite beams are shown in lightface. Input 3 is coupled by the acousto-optic grating (the solid vertical line) to output 2 (bold). The second-order couplings via this grating (shown as the dashed vertical lines) diffract the remaining outputs to a set of depletion waves near original input 3. For a permutation configuration of the crossbar, each input independently experiences this second-order depletion, and thus each input is surrounded by a set of satellite beams. (Figure reprinted with permission from Ref. 3, p. 518).

Fig. 22
Fig. 22

Single integrated-optics device implementation by use of SAW acousto-optic interactions. A waveguide fan-out array is required to match to the spacing of the output-fiber V groove. TIPE IO lenses, titanium in-diffused proton-echange integrated-optics lenses; IDT, interdigital transducer. (Figure reprinted with permission from Ref. 3, p. 489).

Fig. 23
Fig. 23

Parallel-channel acousto-optic crossbar switch implemented with two doublet cylindrical telescopes (compression telescope and expansion telescope). N input channels of P bits are switched to M output channels, also of P bits. Note that [as illustrated in Fig. 1(b)] no switching takes place in the y direction.

Tables (3)

Tables Icon

Table 1 Design Equations for an N × M Crossbar Switch

Tables Icon

Table 2 Design Parameters for a 12 × 12 Crossbar Switch Operating at a Wavelength of λ0 = 850 nm in TeO2 a

Tables Icon

Table 3 Crystal Specifications for the 12 × 12 Crossbar Switch

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

E in ( x in ) = ( r in π ) 1 / 2 e ( 1 / 2 ) [ ( x in / r in ) 2 ] ,
r in f in = λ 0 2 r B π = r out f out .
x ̅ in = x in / r in , x ̅ B = x B / r B , x ̅ out = x out / r out ,
E in ( x ̅ in ) = ( r in π ) 1 / 2 e [ ( 1 / 2 ) x ̅ in 2 ] E B ( x ̅ B ) = ( r B π ) 1 / 2 e [ ( 1 / 2 ) x ̅ B 2 ] E out ( x ̅ out ) = ( r out π ) 1 / 2 e [ ( 1 / 2 ) x ̅ out 2 ] ,
T B ( x B ) = η AO e α x B / 2 rect ( x B / A ) ,
E B + ( x ̅ B ) = T B ( x ̅ B ) E B ( x ̅ B x ̅ 0 ) = η AO r B π e [ ( x ̅ B x ̅ 0 ) 2 ( α ̅ x ̅ B ) ] / 2 rect ( x ̅ B / Ā ) = η AO r B π e ( α ̅ 2 / 4 ) ( α ̅ x ̅ 0 / 2 ) e ( x ̅ B x ̅ 0 + α ̅ / 2 ) 2 / 2 × rect ( x ̅ B / Ā ) ,
α ̅ = r B α , x ̅ 0 = x 0 r B , Ā = A r B ,
η TL = | E B + ( x ̅ B ) | 2 d x ̅ B = η AO π e ( α ̅ 2 / 4 ) α ̅ x ̅ 0 0 A e ( x ̅ B x ̅ 0 + α ̅ / 2 ) 2 d x ̅ B = η AO e ( α ̅ 2 / 4 ) α ̅ x ̅ 0 erf ( Ā + α ̅ / 2 x ̅ 0 ) erf ( α ̅ / 2 x ̅ 0 ) 2 ,
d η TL d x ̅ 0 = 0 = 1 π [ e ( α ̅ / 2 x ̅ 0 ) 2 e ( Ā + α ̅ / 2 x ̅ 0 ) 2 ] + α ̅ 2 [ erf ( α ̅ / 2 x ̅ 0 ) erf ( Ā + α ̅ / 2 x ̅ 0 ) ] ,
η ovrlp ( D ̅ out ) = [ E out ( x ̅ out ) E out ( x ̅ out D ̅ out ) d x ̅ out ] 2 = e D ̅ out 2 / 2 ,
E out ( x ̅ out ) = F { E B + ( x B ) } | f = x out / λ 0 f out = ( η AO r out π ) 1 / 2 e ( α ̅ 2 / 4 α ̅ x ̅ 0 ) / 2 e x ̅ out 2 / 2 × 1 2 { erf [ ( Ā + α ̅ / 2 x ̅ 0 ) / 2 + j x ̅ out ] erf [ ( α ̅ / 2 x ̅ 0 ) / 2 + j x ̅ out ] } .
η OC = | E out ( x ̅ out ) E guide ( x ̅ out ) d x ̅ out | 2 = | E out ( x ̅ out ) π 1 / 4 e x ̅ out 2 / 2 d x ̅ out | 2 .
η X ( D ̅ out ) = | E out ( x ̅ out ) E guide ( x ̅ out D ̅ out ) d x ̅ out | 2 ,
x ̅ out = K ̅ ,
N spots = 2 π r B D ̅ out B V A .
A eff = 2 π r B D ̅ out ,
N spots = A B V A ,
Δ x ̅ out = K ̅ Δ λ 0 λ 0 .
Δ λ 0 λ 0 = 1 N spots .
Δ k x , in = 2 π λ 0 D in f in , Δ k x , out = 2 π λ 0 D out f out ,
Δ k x , in r B = D ̅ in Δ k x , out r B = D ̅ out ,
Δ k x , out Δ k x , in = D ̅ out D ̅ in .
k z width k z shift k z out ,
P A ( k z ) = sinc 2 ( k z L 2 π ) , sinc ( x ) sin ( π x ) π x ,
k z out = ( λ Λ 0 ) ( M 1 ) Δ k x , out ,
k z shift = ( N 1 2 ) 2 Δ k x , in 2 2 k ,
2 π L ( N 1 2 ) 2 Δ k x , in 2 2 k = λ Λ 0 ( M 1 ) Δ k x , out .
η undesired = η AO sinc 2 ( k z , depl L 2 π ) ,
λ Λ 0 = ( 1 + 1 / 2 ) 2 π / L Δ k x , in ,
Δ k x , in = Λ 0 λ 3 2 2 π L .
Δ k x , in = K 0 8 2 3 ( M 1 ) ( D ̅ out / D ̅ in ) ( N 1 ) 2 = K 0 F / ( N 1 ) ,
B = Δ K / ( 2 π / V A ) = V A 2 π ( N 1 ) Δ k x , in ,
F = B / f 0 = ( N 1 ) Δ k x , in / K 0 = 8 2 3 ( M 1 ) D ̅ out D ̅ in ( N 1 ) ,
α = α ̅ r B = C V A ( f 0 + B / 2 ) 2 ,
f 0 = α ̅ C 2 π ( N 1 ) D ̅ in F ( 1 + F / 2 ) 2 ,
N spots = ( N 1 ) Δ k x , in Δ k x , out
N spots = ( N 1 ) D ̅ in D ̅ out .
TB = N spots ( 2 / 3 ) F
L xtal = L + A tan ( θ WO ) = 45 mm .
Z r = D 2 b Λ ,
d ε 0 d z = j κ i = 1 N ε i , o ,
d ε i , o d z = j κ ε o ,
ε Φ ( 0 ) = 0 ε i , o = { ε i ( 0 ) o = Φ ( input ) 0 o Φ ( rediffractions ) ,
ε Φ ( L ) = ε i ( 0 ) N sin ( N κ L ) , ε i , Φ ( L ) = ε i ( 0 ) N [ cos ( N κ L ) + ( N 1 ) ] , ε i , o Φ ( L ) = ε i ( 0 ) N [ cos ( N κ L ) 1 ] ,
L = L 0 3 2 N 1 F
Ā = Ā D in K 0 N 1 F
f in = D in Λ 0 λ 0 N 1 F
f out = ( r out r in ) f in
α ̅
D ̅ out
D ̅ in

Metrics