Abstract

Excimer-laser microetching of a variety of materials is applied to the fabrication of surface-relief optical microstructures of arbitrary morphology, with particular emphasis on computer-generated holographic structures. High-definition, high-radiation-intensity selective laser ablative etching in conjunction with step-and-repeat (period) replication or raster (pixel) scanning is used. To support such developments, the characteristic etching properties of a wide range of solid materials, from metals to semiconductors and polymers, are studied. Optical-interconnect and generic object holograms are produced by means of this alternative one-step holographic information-recording method.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rossi, G. L. Bona, R. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995).
    [CrossRef] [PubMed]
  2. D. G. Stewart, “Head-up display systems,” (patent), Appl. Opt. 30, 4009 (1991).
  3. S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994).
    [CrossRef]
  4. M. Duparre, M. A. Golub, B. Ludge, V. S. Pavelyev, V. A. Soifer, G. V. Uspleniev, S. G. Volotovskii, “Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,” Appl. Opt. 34, 2489–2497 (1995).
    [CrossRef] [PubMed]
  5. M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
    [CrossRef]
  6. W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  7. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  8. H. P. Herzig, R. Dandliker, “Holographic optical elements for use with semiconductor lasers,” in International Trends in Optics, J. W. Goodman, ed., 1991, pp. 57–75.
  9. B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969).
    [CrossRef]
  10. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [CrossRef] [PubMed]
  11. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  12. H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  13. M. R. Feldman, C. C. Guest, “Iterative encoding of highefficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1989).
    [CrossRef] [PubMed]
  14. A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
    [CrossRef]
  15. L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
    [CrossRef]
  16. S. M. Arnold, “Electron beam fabrication of computer generated holograms,” Opt. Eng. 24, 803–807 (1985).
  17. S. C. Baber, “Application of high-resolution laser writers to computer generated holograms and binary diffractive optics,” in Holographic Optics: Optically and Computer Generated, Proc. SPIE 1052, 66–76 (1989).
  18. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
  19. T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).
  20. E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
    [CrossRef]
  21. I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).
  22. K. S. Urquhart, R. Stein, S. H. Lee, “Computer-generated holograms fabricated by direct write of positive electron-beam resist,” Opt. Lett. 18, 308–310 (1993).
    [CrossRef] [PubMed]
  23. D. Bauerle, “Chemical processing with lasers: recent developments,” Appl. Phys. B 46, 261–271 (1988).
    [CrossRef]
  24. M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995).
    [CrossRef]
  25. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
    [CrossRef]
  26. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hard, “Successive development optimization of resist kinoforms manufactured with direct-writing e-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
    [CrossRef] [PubMed]
  27. K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
    [CrossRef]
  28. R. T. Kerth, K. Jain, “Excimer laser projection lithography,” Appl. Opt. 23, 648–650 (1984).
    [CrossRef] [PubMed]
  29. F. G. Bachmann, “Large-scale industrial application for excimer lasers: via hole drilling by photoablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 18–29 (1990).
  30. J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
    [CrossRef]
  31. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
    [CrossRef] [PubMed]
  32. J. M. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 64–72 (1990).
  33. B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).
  34. M. A. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 73–78 (1990).
  35. N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).
  36. L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).
  37. N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).
  38. S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
    [CrossRef]
  39. B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
    [CrossRef]
  40. European Strategic Programme for Research and Development in Information Technology (ESPRIT), “Excimer laser micromachining: Materials reference library,” Rep. D2 (Commission of the European Union, 1993).
  41. B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).
  42. H. Szu, “Neural networks for computing,” AIP Conf. Proc. 151, 420–425 (1986).
    [CrossRef]
  43. K.-H. Brenner, M. Kufner, S. Kufner, J. Moisel, A. Muller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming, and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).
    [CrossRef] [PubMed]
  44. The original relic, dated to circa 1600 B.C., was found in the ruins of the ancient city of Festos, in Crete, Greece. The diameter of the clay disk is approximately 16 cm. The hieroglyphics, probably, but not yet officially, identified as a Linear-A script, were impressed onto the wet clay probably by means of a metal stamp: a very ancient precursor of printing.

1995 (3)

1994 (6)

M. Larsson, M. Ekberg, F. Nikolajeff, S. Hard, “Successive development optimization of resist kinoforms manufactured with direct-writing e-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
[CrossRef] [PubMed]

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994).
[CrossRef]

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

1993 (4)

1992 (2)

S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
[CrossRef]

A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
[CrossRef]

1991 (1)

D. G. Stewart, “Head-up display systems,” (patent), Appl. Opt. 30, 4009 (1991).

1990 (3)

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

1989 (5)

B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

M. R. Feldman, C. C. Guest, “Iterative encoding of highefficiency holograms for generation of spot arrays,” Opt. Lett. 14, 479–481 (1989).
[CrossRef] [PubMed]

S. C. Baber, “Application of high-resolution laser writers to computer generated holograms and binary diffractive optics,” in Holographic Optics: Optically and Computer Generated, Proc. SPIE 1052, 66–76 (1989).

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

1988 (1)

D. Bauerle, “Chemical processing with lasers: recent developments,” Appl. Phys. B 46, 261–271 (1988).
[CrossRef]

1986 (1)

H. Szu, “Neural networks for computing,” AIP Conf. Proc. 151, 420–425 (1986).
[CrossRef]

1985 (1)

S. M. Arnold, “Electron beam fabrication of computer generated holograms,” Opt. Eng. 24, 803–807 (1985).

1984 (1)

1982 (1)

K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
[CrossRef]

1979 (1)

1972 (1)

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

1971 (1)

H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

1969 (2)

B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969).
[CrossRef]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
[CrossRef]

Abe, M.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Allebach, J. P.

B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).

Andrews, A. P.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Anisimov, S.

B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
[CrossRef]

Arnold, S. M.

S. M. Arnold, “Electron beam fabrication of computer generated holograms,” Opt. Eng. 24, 803–807 (1985).

Asai, S.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Baber, S. C.

S. C. Baber, “Application of high-resolution laser writers to computer generated holograms and binary diffractive optics,” in Holographic Optics: Optically and Computer Generated, Proc. SPIE 1052, 66–76 (1989).

Babu, S. V.

S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
[CrossRef]

Bachmann, F. G.

F. G. Bachmann, “Large-scale industrial application for excimer lasers: via hole drilling by photoablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 18–29 (1990).

Bauerle, D.

B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
[CrossRef]

D. Bauerle, “Chemical processing with lasers: recent developments,” Appl. Phys. B 46, 261–271 (1988).
[CrossRef]

Bityurin, N.

B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
[CrossRef]

Bolstad, H. C.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

Bona, G. L.

Booth, B. L.

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

Boutsikaris, L.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

Brenner, K.-H.

Brown, B. R.

B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969).
[CrossRef]

Clausing, R. E.

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Dainty, P.

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

Dammann, H.

H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Dandliker, R.

H. P. Herzig, R. Dandliker, “Holographic optical elements for use with semiconductor lasers,” in International Trends in Optics, J. W. Goodman, ed., 1991, pp. 57–75.

d'Auria, L.

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

D'Couto, G. C.

S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
[CrossRef]

Dirac, H.

M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995).
[CrossRef]

Duparre, M.

Egitto, F. D.

S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
[CrossRef]

Ekberg, M.

Feldman, M. R.

Fotakis, C.

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Goltsos, W.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Golub, M. A.

Gortler, K.

H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Gottert, J.

Guest, C. C.

Gunning, W. J.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Hall, T. J.

A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
[CrossRef]

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

Hanyu, I.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Hard, S.

Hashizume, H.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

Heatherly, L.

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Herzig, H. P.

H. P. Herzig, R. Dandliker, “Holographic optical elements for use with semiconductor lasers,” in International Trends in Optics, J. W. Goodman, ed., 1991, pp. 57–75.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
[CrossRef]

Hohman, J. L.

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

Holz, M.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Huang, A.

Huignard, J. P.

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Hunn, J.

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Ito, H.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Ito, Y.

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994).
[CrossRef]

Jahns, J.

Jain, K.

R. T. Kerth, K. Jain, “Excimer laser projection lithography,” Appl. Opt. 23, 648–650 (1984).
[CrossRef] [PubMed]

K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
[CrossRef]

Jennison, B. K.

B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
[CrossRef]

Keating, K. B.

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

Kerth, R. T.

Khoshnevisan, M.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Kirk, A. G.

A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
[CrossRef]

Kobayashi, S.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

Kosemura, K.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Kufner, M.

Kufner, S.

Kuhlow, B.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Kunz, R. E.

Larsson, M.

Lazare, S.

Lee, S. H.

Lee, W. H.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
[CrossRef]

Lin, B. J.

K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
[CrossRef]

Lohmann, A. W.

B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969).
[CrossRef]

Ludge, B.

Luk'yanchuk, B.

B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
[CrossRef]

Madamopoulos, N.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

Mailis, S.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

Marchegiano, J. E.

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

Mihailov, S.

Mohr, J.

Moisel, J.

Motamedi, M. E.

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

Mullenborn, M.

M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995).
[CrossRef]

Muller, A.

Nikolajeff, F.

Nunokawa, M.

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Ogata, S.

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994).
[CrossRef]

Oprysko, M. M.

J. M. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 64–72 (1990).

Parmiter, P. J.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

Pavelyev, V. S.

Pawlowski, E.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Petersen, J. W.

M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995).
[CrossRef]

Petrakis, A.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

Pissadakis, S.

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

Powell, A. K.

A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
[CrossRef]

Rossi, M.

M. Rossi, G. L. Bona, R. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995).
[CrossRef] [PubMed]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Roy, A. M.

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Seki, M.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

Sinzinger, S.

Soifer, V. A.

Spitz, E.

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Stein, R.

Stewart, D. G.

D. G. Stewart, “Head-up display systems,” (patent), Appl. Opt. 30, 4009 (1991).

Stiller, M. A.

M. A. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 73–78 (1990).

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Sweeney, D. W.

B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).

Szu, H.

H. Szu, “Neural networks for computing,” AIP Conf. Proc. 151, 420–425 (1986).
[CrossRef]

Testorf, M.

Trewhella, J. M.

J. M. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 64–72 (1990).

Urquhart, K. S.

Uspleniev, G. V.

Vainos, N. A.

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

Volotovskii, S. G.

White, C. W.

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Wilson, C. G.

K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
[CrossRef]

Withrow, S. P.

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Witman, S. L.

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

Yatagai, T.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

AIP Conf. Proc. (1)

H. Szu, “Neural networks for computing,” AIP Conf. Proc. 151, 420–425 (1986).
[CrossRef]

Appl. Opt. (9)

K.-H. Brenner, M. Kufner, S. Kufner, J. Moisel, A. Muller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming, and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).
[CrossRef] [PubMed]

M. Rossi, G. L. Bona, R. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995).
[CrossRef] [PubMed]

D. G. Stewart, “Head-up display systems,” (patent), Appl. Opt. 30, 4009 (1991).

M. Duparre, M. A. Golub, B. Ludge, V. S. Pavelyev, V. A. Soifer, G. V. Uspleniev, S. G. Volotovskii, “Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams,” Appl. Opt. 34, 2489–2497 (1995).
[CrossRef] [PubMed]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
[CrossRef] [PubMed]

M. Larsson, M. Ekberg, F. Nikolajeff, S. Hard, “Successive development optimization of resist kinoforms manufactured with direct-writing e-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
[CrossRef] [PubMed]

R. T. Kerth, K. Jain, “Excimer laser projection lithography,” Appl. Opt. 23, 648–650 (1984).
[CrossRef] [PubMed]

S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
[CrossRef] [PubMed]

Appl. Phys. A (1)

B. Luk'yanchuk, N. Bityurin, S. Anisimov, D. Bauerle, “The role of excited species in UV-laser materials ablation,” Appl. Phys. A 57, 367–374 (1993).
[CrossRef]

Appl. Phys. B (1)

D. Bauerle, “Chemical processing with lasers: recent developments,” Appl. Phys. B 46, 261–271 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

J. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, “Fabrication of single-crystal diamond microcomponents,” Appl. Phys. Lett. 65, 3072–3074 (1994).
[CrossRef]

Appl. Surf. Sci. (1)

M. Mullenborn, H. Dirac, J. W. Petersen, “Threedimensional nanostructures by direct laser etching of Si,” Appl. Surf. Sci. 86, 568–576 (1995).
[CrossRef]

Computer and Optically Formed Holographic Optics (1)

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, Proc. SPIE 1211, 191–197 (1990).

Holographic Optics: Optically and Computer Generated (1)

S. C. Baber, “Application of high-resolution laser writers to computer generated holograms and binary diffractive optics,” in Holographic Optics: Optically and Computer Generated, Proc. SPIE 1052, 66–76 (1989).

IBM J. of Res. Technol. (1)

B. R. Brown, A. W. Lohmann, “Computer-generated binary holograms,” IBM J. of Res. Technol. 13, 160–168 (1969).
[CrossRef]

IBM J. Res. Technol. (2)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Technol. 13, 150–155 (1969).
[CrossRef]

K. Jain, C. G. Wilson, B. J. Lin, “Ultrafast high-resolution contact lithography with excimer lasers,” IBM J. Res. Technol. 26, 151–159 (1982).
[CrossRef]

J. Appl. Phys. (1)

S. V. Babu, G. C. D'Couto, F. D. Egitto, “Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene,” J. Appl. Phys. 72, 692–698 (1992), and references therein.
[CrossRef]

Opt. Commun. (3)

H. Dammann, K. Gortler, “High efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

A. G. Kirk, A. K. Powell, T. J. Hall, “A generalisation of the error diffusion method for binary computer generated hologram design,” Opt. Commun. 92, 12–18 (1992).
[CrossRef]

L. d'Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Opt. Eng. (8)

S. M. Arnold, “Electron beam fabrication of computer generated holograms,” Opt. Eng. 24, 803–807 (1985).

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

M. E. Motamedi, A. P. Andrews, W. J. Gunning, M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616–3623 (1994).
[CrossRef]

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3661 (1994).
[CrossRef]

B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” Opt. Eng. 28, 629–637 (1989).

Opt. Lett. (2)

Optical/Laser Microlithography (1)

I. Hanyu, S. Asai, K. Kosemura, H. Ito, M. Nunokawa, M. Abe, “New phase-shifting mask with highly transparent SiO2 phase shifters,” in Optical/Laser Microlithography, Proc. SPIE 1264, 167–177 (1990).

Other (10)

H. P. Herzig, R. Dandliker, “Holographic optical elements for use with semiconductor lasers,” in International Trends in Optics, J. W. Goodman, ed., 1991, pp. 57–75.

F. G. Bachmann, “Large-scale industrial application for excimer lasers: via hole drilling by photoablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 18–29 (1990).

European Strategic Programme for Research and Development in Information Technology (ESPRIT), “Excimer laser micromachining: Materials reference library,” Rep. D2 (Commission of the European Union, 1993).

J. M. Trewhella, M. M. Oprysko, “Total internal reflection mirrors fabricated in polymeric optical waveguides via excimer laser ablation,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 64–72 (1990).

B. L. Booth, J. L. Hohman, K. B. Keating, J. E. Marchegiano, S. L. Witman, “Excimer laser micromachining for passive fiber coupling to polymeric waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 57–63 (1990).

M. A. Stiller, “Excimer laser fabrication of waveguide devices,” in Excimer Laser Materials Processing and Beam Delivery Systems, P. B. Piwczyle, ed., Proc. SPIE1377, 73–78 (1990).

N. A. Vainos, S. Mailis, S. Pissadakis, P. Dainty, T. J. Hall, “Excimer laser micromachining: materials reference library and microetching of holographic optical interconnect structures,” paper presented at the Fourth International Conference on Holographic Systems, Components, and Applications, September 1993, Neuchatel, Switzerland (postdeadline paper).

L. Boutsikaris, S. Mailis, N. Madamopoulos, S. Pissadakis, A. Petrakis, N. A. Vainos, P. Dainty, P. J. Parmiter, T. J. Hall, “Computer-generated holographic diffractive structures fabricated by direct excimer laser microetching,” in Laser-Induced Thin Film Processing, J. J. Dubowski, ed., Proc. SPIE2403, 448–455 (1995).

N. A. Vainos, S. Mailis, L. Boutsikaris, S. Pissadakis, C. Fotakis, “Etching of optical microstructures and uses,” Greek patent no. GR 1002163, March1996;European patent no. 96600004.4 (pending).

The original relic, dated to circa 1600 B.C., was found in the ruins of the ancient city of Festos, in Crete, Greece. The diameter of the clay disk is approximately 16 cm. The hieroglyphics, probably, but not yet officially, identified as a Linear-A script, were impressed onto the wet clay probably by means of a metal stamp: a very ancient precursor of printing.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) Schematic diagram of the optical setup for excimer-laser micromachining: A: attenuator, BDO: beam-delivery optics, M: mask, BS: beam splitter, OBJ: objective, S: substrate, BAS: balancing system, X-Y TS: xy translation stage, MOL: microscope ocular lens, CCD: CCD camera. (b) System for on-line monitoring of the etching process: MIR: mirror, L: lens, IS: iris, PD: photodiode.

Fig. 2
Fig. 2

Example of typical etch-profile geometry.

Fig. 3
Fig. 3

SEM pictures of etched patterns on three representative examples of polymer materials: (a) poly(carbonate) with etching parameters of (from left) ED = 3385, 3000, 2600, 740 mJ/cm2 and N = 5, (b) poly(methylpentene)-TPX with etching parameters of ED = 5460 mJ/cm2 and (from left) N = 1, 2, 5, and (c) poly(ethylene) with etching parameters of ED = 5800 mJ/cm2, 50 Hz, and N = 100.

Fig. 4
Fig. 4

SEM pictures of etched patterns on three representative examples of metals and metal alloys: (a) Pb with etching parameters of (from left) ED = 110, 44 mJ/cm2 and N = 2, (b) Ti with etching parameters of ED = 2600 mJ/cm2 and (from left) N = 1, 5, and (c) stainless steel with etching parameters of ED = 2110 mJ/cm2 and (from left) N = 10, 20, 50.

Fig. 5
Fig. 5

SEM pictures of etched patterns on two representative examples of crystals and semiconductors: (a) LiNbO3 with etching parameters of ED = 1300 mJ/cm2 and (from left) N = 1, 2, 5, (b) Si–Si epilayer with etching parameters of ED = 2950 mJ/cm2 and (from left) N = 1, 2, 5.

Fig. 6
Fig. 6

Etching rates ER1 and ER2 for (a) poly(carbonate), (b) poly(methylpentene)-TPX, and (c) poly(ethylene).

Fig. 7
Fig. 7

Etching rates ER1 and ER2 for (a) Ti and (b) stainless steel.

Fig. 8
Fig. 8

(a) SEM photograph (close-up view) of a fan-out hologram etched on photoresist. This photograph shows an array of 5 × 5 single-period master patterns, each consisting of 53 × 53 (3.7 μm × 3.7 μm) pixels. The whiter areas are SEM artifacts. (b) Reconstruction of the CGH (fan-out element) shown in (a), etched on photoresist.

Fig. 9
Fig. 9

(a) SEM photograph (far view) of the “FORTH-KCL” hologram etched on photoresist. This photograph shows an array of 5 × 5 single-period master patterns, each consisting of 64 × 64 (2.4 μm × 2.4 μm) pixels. (b) Reconstruction of the “FORTH-KCL” hologram etched on photoresist.

Fig. 10
Fig. 10

(a) SEM photograph (far view) of the “THISISNOTA-HOLOGRAM” hologram etched on photoresist. This photograph shows an array of 5 × 5 single-period master patterns, each consisting of 128 × 128 (2.4 μm × 2.4 μm) pixels. (b) Reconstruction of the “THISISNOTAHOLOGRAM” hologram etched on photoresist.

Fig. 11
Fig. 11

(a) SEM photograph (close-up view) of a fan-out hologram etched on stainless steel. This picture represents an array of 7 × 7 single-period master patterns, each consisting of 53 × 53 (2.4 μm × 2.4 μm) pixels. (b) Reconstruction of the CGH shown in (a) etched on stainless steel.

Fig. 12
Fig. 12

(a) SEM photograph of microlenslike microstructures etched on photoresist on a pixel-by-pixel basis. The pixel size is 7 μm. (b) SEM photograph of a microlens etched on photoresist. The pixel size is 3 μm.

Fig. 13
Fig. 13

SEM photograph of the Disk of Festos etched on photoresist on a pixel-by-pixel basis. The pixel size is 3 μm.

Fig. 14
Fig. 14

SEM photograph of a Fresnel lens etched on photoresist on a pixel-by-pixel basis. The pixel size is 3 μm.

Fig. 15
Fig. 15

SEM photograph of a fan-out hologram etched on a poly(styrene) ball.

Fig. 16
Fig. 16

SEM (a) close-up and (b) far-view photographs of a fan-out hologram etched on an acrylic lens. Note that the antireflection coating of the lens has been laser cleaned by the same system prior to CGH etching.

Fig. 17
Fig. 17

(a) SEM photograph of the “FORTH-KCL” master hologram etched on stainless steel. (b) A SEM photograph of the “FORTH-KCL” poly(styrene) replica hologram. (c) Reconstruction of the “FORTH-KCL” poly(styrene) replica hologram.

Tables (1)

Tables Icon

Table 1 Typical Values for Parameters Relevant to the Performance of Fan-Out Holograms Etched on Photoresist and Stainless Steel with Two Sizes of Mask a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E = i , j [ | f ( i , j ) | 2 | α h ( i , j ) | 2 ] 2 ,
p = 1 , Δ E 0 = exp ( Δ E T ( z ) ) , Δ E > 0 ,
H ̂ ( m ) = DFT ( h ̂ ) [ sinc ( m N ) ] ,
H ̂ ( m ) = l = 1 N h ̂ ( l ) exp ( 2 π ilm N ) [ sinc ( m N ) ] .
H ̂ ( m ) = H ̂ ( m ) 2 h ̂ ( l ) L ̂ ( l , m ) ,
L ̂ ( l , m ) = exp ( 2 π ilm N ) [ sin c ( m N ) ] .
E = m Ω [ | F ̂ ( m ) | 2 | α H ̂ ( m ) | 2 ] 2 ,

Metrics