Abstract

We present calculations of fluorescence from single molecules (modeled as damped oscillating dipoles) inside a dielectric sphere. For an excited molecule at an arbitrary position within the sphere we calculate the fluorescence intensity collected by an objective in some well-defined detection geometry. We find that, for the cases we model, integration over the emission linewidth of the molecule is essential for obtaining representative results. Effects such as dipole position and orientation, numerical aperture of the collection objective, sphere size, emission wavelength, and linewidth are examined. These results are applicable to single-molecule detection techniques employing microdroplets.

© 1996 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription