Abstract

We determine the cross-sensitivity coefficient that represents the interaction between temperature and hydrostatic pressure in Corning elliptical-core, highly birefringent (HB) fiber. The measurement method we propose is especially useful to determine the cross-sensitivity effects in weakly sensitive HB fibers. The method involves registration of the residual temperature drift of thermally compensated polarimetric sensors at specially chosen values of pressure applied to the sensing fibers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).
  2. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  3. F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
    [CrossRef]
  4. F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 234–243 (1992).
  5. W. J. Bock, W. Urbańczyk, R. Buczynski, A. W. Domanski, “Cross-sensitivity effect in temperature-compensated sensors based on highly birefringent fibers,” Appl. Opt. 33, 6078–6083 (1994).
    [CrossRef] [PubMed]
  6. W. J. Bock, W. Urbańczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [CrossRef] [PubMed]
  7. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]

1994 (1)

1993 (1)

1990 (1)

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

1984 (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Bock, W. J.

Buczynski, R.

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

Dakin, J. P.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Domanski, A. W.

Farahi, F.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 234–243 (1992).

Jackson, D. A.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 234–243 (1992).

Jones, J. D. C.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

Udd, E.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Urbanczyk, W.

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Webb, D. J.

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

J. Lightwave Technol. (1)

F. Farahi, D. J. Webb, J. D. C. Jones, D. A. Jackson, “Simultaneous measurements of temperature and strain: crosssensitivity considerations,” J. Lightwave Technol. 8, 138–142 (1990).
[CrossRef]

Other (3)

F. Farahi, D. A. Jackson, “Temperature and strain sensing using monomode optical fiber,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 234–243 (1992).

B. Culshaw, J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech, Boston, 1988).

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of temperature-compensated polarimetric sensor based on HB fiber.

Fig. 2
Fig. 2

Experimental setup: LD, laser diode; D1, D2, photodetectors; A, analyzer.

Fig. 3
Fig. 3

Pressure characteristic of the shorter sensor (L 1 = 0.85 m) taken at room temperature.

Fig. 4
Fig. 4

Intensity responses to rapid temperature changes (ΔT = 30 °C) of the shorter sensor (L 1 = 0.85 m) under different pressures: (a) P = 3.6 MPa, temperature decrease from T 1 = 40 °C to T 2 = 10 °C; (b) P = 23.7 MPa, temperature increase from T 1 = 10 °C to T 2 = 40 °C.

Fig. 5
Fig. 5

Residual temperature sensitivities ρ T versus pressure for the shorter (L 1 = 0.85 m) and the longer (L 1′ = 1.58 m) sensors.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ S ( Δ T , Δ X ) = Δ L K T Δ T + Δ L K T T Δ T 2 + L 1 K T X Δ T Δ X + L 1 K X Δ X + L 1 K X X Δ X 2 ,
K α = 1 L 1 ϕ α for α = T , X , K α β = 1 2 L 1 2 ϕ α β for α , β = T , X .
ρ T = Δ ϕ S T = Δ L K T + L 1 K T X Δ X .
K T X = 1 L 1 ρ T X .
I ( P , T ) = I 0 ( 1 cos Δ ϕ S ) ,
Δ I = I 0 sin ϕ S Δ ϕ S .
Δ ϕ S = Δ I ( 2 I 0 I I 2 ) 1 / 2 ,
K T P = ( 9.02 ± 0.06 ) × 10 5 rad / m K MPa , K T P = ( 9.04 ± 0.06 ) × 10 5 rad / m K MPa

Metrics