Abstract

An integrated optic sensor head was proposed for sensing a two-dimensional displacement of a scale consisting of crossed gratings. Two interferometers, crossing each other, are constructed by the integration of two pairs of linearly focusing grating couplers (LFGC's) and two pairs of photodiodes (PD's) on a Si substrate. Four beams radiated by the LFGC's from the sensor head overlap on the grating scale, and the beams are diffracted by the grating scale and interfere on the PD's. The period of the interference signal variation is just half of the scale grating period. The device was designed and fabricated with a grating scale of 3.2-μm period, and the sensing principle was experimentally confirmed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
    [CrossRef]
  2. P. Gidon, S. Valette, P. Schweizer, “Vibration sensor using planar integrated interferometer circuit on oxidised silicon substrate,” presented at the International Conference of Optical Fiber Sensors '84, 5–7 September 1984, Stuttgart, Germany.
  3. T. Yamashita, J. Takagi, “Integrated optic microdisplacement sensor using two asymmetric x junctions and a lod lens,” presented at the International Conference on Optical Fiber Sensors '86, 7–9 October 1986, Tokyo.
  4. S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
    [CrossRef]
  5. T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
    [CrossRef]
  6. H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
    [CrossRef]
  7. D. Jestel, A. Baus, E. Voges, “Integrated-optic displacement sensor in glass with 1 nm resolution,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper ThE2.
  8. D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
    [CrossRef]
  9. B. Geh, A. Dorsel, “Integrated optical grating scale readout employing a double grating,” Appl. Opt. 31, 5241–5245 (1992).
    [CrossRef] [PubMed]
  10. S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
    [CrossRef]
  11. S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.
  12. S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.
  13. A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
    [CrossRef]
  14. S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel pickup,” J. Opt. Soc. Am. A 7, 1759–1763 (1990).
    [CrossRef]
  15. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
    [CrossRef]

1995 (2)

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

1994 (1)

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

1992 (1)

1991 (1)

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
[CrossRef]

1990 (1)

1989 (1)

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

1986 (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

1982 (1)

M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
[CrossRef]

1977 (1)

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Baus, A.

D. Jestel, A. Baus, E. Voges, “Integrated-optic displacement sensor in glass with 1 nm resolution,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper ThE2.

Dändliker, R.

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

Dorsel, A.

Endoh, T.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.

Enokihara, A.

M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
[CrossRef]

Furukawa, Y.

Geh, B.

Gidon, P.

P. Gidon, S. Valette, P. Schweizer, “Vibration sensor using planar integrated interferometer circuit on oxidised silicon substrate,” presented at the International Conference of Optical Fiber Sensors '84, 5–7 September 1984, Stuttgart, Germany.

Haruna, M.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
[CrossRef]

Hirata, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Hofstetter, D.

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

Iio, S.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Izutsu, M.

M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
[CrossRef]

Jestel, D.

D. Jestel, A. Baus, E. Voges, “Integrated-optic displacement sensor in glass with 1 nm resolution,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper ThE2.

Katzir, A.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

Livanos, A. C.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Nishihara, H.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
[CrossRef]

S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel pickup,” J. Opt. Soc. Am. A 7, 1759–1763 (1990).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.

Schweizer, P.

P. Gidon, S. Valette, P. Schweizer, “Vibration sensor using planar integrated interferometer circuit on oxidised silicon substrate,” presented at the International Conference of Optical Fiber Sensors '84, 5–7 September 1984, Stuttgart, Germany.

Shellan, J. B.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Shinohara, M.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

Suehiro, M.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Sueta, T.

M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
[CrossRef]

Suhara, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel pickup,” J. Opt. Soc. Am. A 7, 1759–1763 (1990).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.

Takagi, J.

T. Yamashita, J. Takagi, “Integrated optic microdisplacement sensor using two asymmetric x junctions and a lod lens,” presented at the International Conference on Optical Fiber Sensors '86, 7–9 October 1986, Tokyo.

Taniguchi, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Toda, H.

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
[CrossRef]

Uemukai, M.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Ura, S.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

S. Ura, Y. Furukawa, T. Suhara, H. Nishihara, “Linearly focusing grating coupler for integrated-optic parallel pickup,” J. Opt. Soc. Am. A 7, 1759–1763 (1990).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.

Valette, S.

P. Gidon, S. Valette, P. Schweizer, “Vibration sensor using planar integrated interferometer circuit on oxidised silicon substrate,” presented at the International Conference of Optical Fiber Sensors '84, 5–7 September 1984, Stuttgart, Germany.

Voges, E.

D. Jestel, A. Baus, E. Voges, “Integrated-optic displacement sensor in glass with 1 nm resolution,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper ThE2.

Yamashita, T.

T. Yamashita, J. Takagi, “Integrated optic microdisplacement sensor using two asymmetric x junctions and a lod lens,” presented at the International Conference on Optical Fiber Sensors '86, 7–9 October 1986, Tokyo.

Yariv, A.

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

Zappe, H. P.

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

M. Izutsu, A. Enokihara, T. Sueta, “Optical-waveguide microdisplacement sensor,” Electron. Lett. 18, 867–868 (1982).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Katzir, A. C. Livanos, J. B. Shellan, A. Yariv, “Chirped gratings in integrated optics,” IEEE J. Quantum Electron. QE-13, 296–304 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

J. Lightwave Technol. (3)

S. Ura, T. Suhara, H. Nishihara, “Integrated-optic interferometer position sensor,” J. Lightwave Technol. 7, 270–273 (1989).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986).
[CrossRef]

H. Toda, M. Haruna, H. Nishihara, “Integrated-optic heterodyne interferometer for displacement measurement,” J. Lightwave Technol. 9, 683–687 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Photon. Technol. Lett. (1)

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser,” Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Other (5)

P. Gidon, S. Valette, P. Schweizer, “Vibration sensor using planar integrated interferometer circuit on oxidised silicon substrate,” presented at the International Conference of Optical Fiber Sensors '84, 5–7 September 1984, Stuttgart, Germany.

T. Yamashita, J. Takagi, “Integrated optic microdisplacement sensor using two asymmetric x junctions and a lod lens,” presented at the International Conference on Optical Fiber Sensors '86, 7–9 October 1986, Tokyo.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Linearly focusing grating couplers for sensing 2-dimensional grating-scale displacement,” presented at the Topical Meeting of the International Commission on Optics '94, 4–8 April 1994, Kyoto, Japan.

S. Ura, T. Endoh, T. Suhara, H. Nishihara, “Integrated-optic head for sensing two-dimensional displacement of grating scale,” presented at the Tenth International Conference on Integrated Optics and Optical Fibre Communications, 26–30 June 1995, Hong Kong.

D. Jestel, A. Baus, E. Voges, “Integrated-optic displacement sensor in glass with 1 nm resolution,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper ThE2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Proposed integrated optic device for sensing 2-D displacement of grating scale.

Fig. 2
Fig. 2

Cross-sectional view illustrating the principle of displacement sensing.

Fig. 3
Fig. 3

Configuration of LFGC's.

Fig. 4
Fig. 4

Dependence of visibility V and relative variation depth D on the product of the LFGC aperture Ly and the radiation decay factor α.

Fig. 5
Fig. 5

Fabrication processes of the integrated optic sensor. PBF's, poly-boron films.

Fig. 6
Fig. 6

Microphotograph of the fabricated LFGC's and PD's.

Fig. 7
Fig. 7

Photograph of the fabricated device. IC, integrated circuit.

Fig. 8
Fig. 8

Photograph of the interference pattern generated by a four-beam overlap on the grating scale plane.

Fig. 9
Fig. 9

Photograph of two crossed focal lines formed on the PD plane.

Fig. 10
Fig. 10

Temporal variation of the output photocurrents of PD2 and PD4 measured when the grating scale was moving along the direction of (a) 45°, (b) 30° off from the ξ axis to the ψ axis.

Fig. 11
Fig. 11

Measured output photocurrents of PD1 and PD4. A constant phase retardation was obtained in the temporal periodic variation.

Tables (1)

Tables Icon

Table 1 Specifications of the Fabricated Integrated Optic Sensor Head

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E 1 exp { j [ 2 π Λ s Δ ξ + k ( 1 + cos θ ) Δ ζ ] } ,
E 4 = E 4 exp { j [ 2 π Λ s Δ ξ + k ( 1 + cos θ ) Δ ζ ] } ,
I 14 = I 1 + I 4 + 2 ( I 1 I 4 ) 1 / 2 cos ( 4 π Λ S Δ ξ + ϕ c ) ,
I 1 = | E 1 | 2 , I 4 = | E 4 | 2 , E 1 E 4 * = ( I 1 I 4 ) 1 / 2 exp ( j ϕ c ) ,
Φ LF = Φ DF Φ IN = 2 m π + const . ,
Φ IN = k N [ x 2 + ( y + r ) 2 ] 1 / 2 ,
Φ DF = k sin θ [ cos γ ( x r x ) + sin γ ( y r y ) ] k cos θ { [ sin γ ( x r x ) + cos γ ( y r y ) ] 2 + f 2 } 1 / 2 ,
P f = P in η a [ 1 exp ( 2 α L y ) ] , P r = P in exp ( 2 α L y ) η a [ 1 exp [ 2 α L y ) ] ,
V ( P f + P r ) 2 ( P f P r ) 2 ( P f + P r ) 2 + ( P f P r ) 2 = 2 exp ( α L y ) [ 1 + exp ( 2 α L y ) ] ,
D ( P f + P r ) 2 ( P f P r ) 2 2 P in η a = 2 exp ( α L y ) [ 1 exp ( 2 α L y ) ] ,
Λ F = Λ S 2 2 Δ Λ S .
2 π λ 2 π d GS = 1.84.

Metrics