Abstract

A new type of hollow glass waveguide has been fabricated that transmits radiation from visible to infrared wavelengths with low loss. The broadband transmission is achieved with a structure consisting of two distinct core regions; a silica annulus for transmission of wavelengths from 0.3 to 2.0 mm and a hollow core for transmission from 2.0 to 12.0 mm. Losses in the silica core at 633 nm are 0.3 dB/m. Losses in the 575-mm bore hollow core at 10.6 μm are 0.6 dB/m. Bending loss is negligible for radiation transmitted in the solid silica core, whereas the hollow guide loss exhibits a 1/R dependence. The dual-core waveguide can transmit broadband radiation, is rugged and flexible, and therefore, is a good candidate for medical or sensor applications.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, ed., Infrared Fiber Optics, Milestone Series (Proc. SPIE, Bellingham, Wash., 1990), Vol. MS 9, pp. 409–470, 527–537.
  2. R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).
  3. C. C. Gregory, J. A. Harrington, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  4. T. Abel, J. A. Harrington, P. R. Foy, “Optical properties of hollow calcium aluminate glass waveguides,” Appl. Opt. 33, 3919–3922 (1994).
    [CrossRef] [PubMed]
  5. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for CO2 laser light,” Appl. Opt. 31, 6441–6445 (1992).
    [CrossRef] [PubMed]
  6. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  7. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
    [CrossRef]
  8. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  9. N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).
  10. R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
    [CrossRef]
  11. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  12. J. A. Harrington, Y. Matsuura, “Review of Hollow Waveguide Technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
  13. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [CrossRef] [PubMed]
  14. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3 μm Er:YAG, 5 mm CO, and 10.6 mm CO2 laser light transmission,” Appl. Opt. 29, 2213–2217 (1990).
    [CrossRef] [PubMed]
  15. Y. Matsuura, T. C. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  16. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1689 (1994).
    [CrossRef]

1996

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).

1995

1994

1992

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for CO2 laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

1991

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

1990

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1964

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Abe, S.

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Abel, T.

Abel, T. C.

Croitoru, N.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

Dahan, R.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Dror, J.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

Foy, P. R.

Gannot, I.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

Goldenberg, E.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

Gregory, C. C.

Harrington, J. A.

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).

Y. Matsuura, T. C. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1689 (1994).
[CrossRef]

T. Abel, J. A. Harrington, P. R. Foy, “Optical properties of hollow calcium aluminate glass waveguides,” Appl. Opt. 33, 3919–3922 (1994).
[CrossRef] [PubMed]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

C. C. Gregory, J. A. Harrington, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

J. A. Harrington, Y. Matsuura, “Review of Hollow Waveguide Technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).

Hirsch, J.

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1689 (1994).
[CrossRef]

Hongo, A.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kozodoy, R. L.

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matsuura, Y.

Mendelovic, D.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

Micheels, R. H.

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).

Miyagi, M.

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for CO2 laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3 μm Er:YAG, 5 mm CO, and 10.6 mm CO2 laser light transmission,” Appl. Opt. 29, 2213–2217 (1990).
[CrossRef] [PubMed]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Appl. Opt.

Appl. Spectrosc.

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 30, 319–321 (1996).

Bell Syst. Tech. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Electron. Lett.

Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1689 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991).
[CrossRef]

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Mater. Res. Bull.

R. Dahan, J. Dror, N. Croitoru, “Characterization of chemically formed silver iodide layers for hollow infrared guides,” Mater. Res. Bull. 27, 761–766 (1992).
[CrossRef]

Opt. Lett.

Other

N. Croitoru, J. Dror, E. Goldenberg, D. Mendelovic, I. Gannot, “Hollow fiber waveguide and method of making same,” U.S. Patent4,930,863 (5June1990).

J. A. Harrington, Y. Matsuura, “Review of Hollow Waveguide Technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).

J. A. Harrington, ed., Infrared Fiber Optics, Milestone Series (Proc. SPIE, Bellingham, Wash., 1990), Vol. MS 9, pp. 409–470, 527–537.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of single hollow-core, silver/silver iodide-coated waveguide for IR transmission.

Fig. 2
Fig. 2

(a) Schematic of dual-core structure showing guiding structure in annulus and silver/silver iodide films in bore. (b) Index profile of composite dual-core structure with silver/silver iodide films.

Fig. 3
Fig. 3

Spectral loss of the hollow-core region of a dual-core waveguide optimized for use at 10.6 mm. The waveguide is excited by a Gaussian beam with a full width at half-maximum of 8°.

Fig. 4
Fig. 4

Measured bending losses for the dual-core waveguide at three laser wavelengths: ▲, He–Ne laser at 632.8 nm; ■, Er:YAG laser at 2.95 μm; ●, CO2 laser at 10.6 mm.

Fig. 5
Fig. 5

Near-field spatial output beam profile for the silica annulus of dual-core waveguide with a He–Ne laser (632.8-nm) input beam.

Fig. 6
Fig. 6

Measured bore diameter for dual-core waveguide (solid line) and single-core tubing of similar size (dashed curve) showing nonuniformity of dual-core substrate tubing.

Tables (1)

Tables Icon

Table 1 Dual-Core Waveguide Loss (dB/m) Measured at Three Laser Wavelengths in Both Straight and Bent Configuration

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = ( U 0 2 π ) λ 2 α 3 ( n n 2 + k 2 ) metal F film ,
d = λ p 4 1 ( n d 2 1 ) 1 / 2 ,

Metrics