Abstract

A photolithographic process has been used to form cross-shaped patterns in 3-μm-thick nickel foils. Patterns with cross arm dimensions in the 10–20-μm range, and with periodicities in the 16–26-μm range, yield self-resonant bandpass filters for wavelengths in the 20–25-μm region. Transmittances as high as 80% were achieved with center wavelength-to-bandwidth ratios (λR/Δλ) of ∼5. We present a simple empirical formula that relates the wavelength of peak transmittance, or resonant frequency, with cross dimensions and periodicity.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  2. R. Ruprecht, W. Bacher, “Untersuchungen an mikrostrukturierten Bandpassfiltern fur das Ferne Infrarot und ihre Herstellung durch Rontgentiefenlithographie und Mikrogalvanoformung,” Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK 4825, 1–83 (1991).
  3. L. A. Page, E. S. Cheng, B. Golubovic, J. Gundersen, S. S. Meyer, “Millimeter-submillimeter wavelength filter system,” Appl. Opt. 33, 11–23 (1994).
    [CrossRef] [PubMed]
  4. R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
    [CrossRef]
  5. S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
    [CrossRef] [PubMed]
  6. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994).
    [CrossRef] [PubMed]

1994 (2)

1991 (1)

R. Ruprecht, W. Bacher, “Untersuchungen an mikrostrukturierten Bandpassfiltern fur das Ferne Infrarot und ihre Herstellung durch Rontgentiefenlithographie und Mikrogalvanoformung,” Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK 4825, 1–83 (1991).

1983 (2)

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

S. T. Chase, R. D. Joseph, “Resonant array bandpass filters for the far infrared,” Appl. Opt. 22, 1775–1779 (1983).
[CrossRef] [PubMed]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Bacher, W.

R. Ruprecht, W. Bacher, “Untersuchungen an mikrostrukturierten Bandpassfiltern fur das Ferne Infrarot und ihre Herstellung durch Rontgentiefenlithographie und Mikrogalvanoformung,” Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK 4825, 1–83 (1991).

Botten, L. C.

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Chase, S. T.

Cheng, E. S.

Compton, R. C.

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Crowe, T. W.

Densing, R.

Derrick, G. H.

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Golubovic, B.

Gundersen, J.

Hesler, J. L.

Joseph, R. D.

Mcphedran, R. C.

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Meyer, S. S.

Mueller, E. R.

Page, L. A.

Porterfield, D. W.

Ruprecht, R.

R. Ruprecht, W. Bacher, “Untersuchungen an mikrostrukturierten Bandpassfiltern fur das Ferne Infrarot und ihre Herstellung durch Rontgentiefenlithographie und Mikrogalvanoformung,” Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK 4825, 1–83 (1991).

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Weikle, R. M.

Appl. Opt. (3)

Infrared Phys. (2)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

R. C. Compton, R. C. Mcphedran, G. H. Derrick, L. C. Botten, “Diffraction properties of a bandpass grid,” Infrared Phys. 23, 239–245 (1983).
[CrossRef]

Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK (1)

R. Ruprecht, W. Bacher, “Untersuchungen an mikrostrukturierten Bandpassfiltern fur das Ferne Infrarot und ihre Herstellung durch Rontgentiefenlithographie und Mikrogalvanoformung,” Inst. Mikrostrukurtech. Kernforschungszentrum Karlsruhe KfK 4825, 1–83 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Magnified (1400×) positive image of a photoetched cross-patterned array.

Fig. 2
Fig. 2

Magnified (5000×) image of a single cross-shaped hole etched in a 3-μm-thick nickel foil.

Fig. 3
Fig. 3

Measured transmittance of four cross-patterned filters with g values of approximately 16 μm and one filter with g = 26 μm.

Fig. 4
Fig. 4

(a) Measured transmittance of filter A2 (g ≈ 16 μm) in the 10–100-μm wavelength region and the computed transmittance expected from two A2-type filters placed in series. (b) Log scale plot of (a) to emphasize transmittance in the out-of-band wavelength region.

Fig. 5
Fig. 5

Calculated transmittance of a cross pattern filter, with g = 20, t/g ≈ 0.16, 2a/g ≈ 0.12 (Ref. 4), compared with the measured transmittance of filter A2 with g = 16.5, t/g = 0.16, and 2a/g = 0.28.

Tables (2)

Tables Icon

Table 1 Key Filter Design Parameters

Tables Icon

Table 2 Comparison of Measured and Calculated Values of Resonant Wavelengths λ R the use of Cross Pattern Array Dimensions for Filter Sets from Three Sources

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A = 2 bL + 2 bL 4 b 2 = 4 ( bL b 2 ) .
λ R = A / 2 b = 2 L 2 b = 2 ( g 2 a b ) ,

Metrics