Abstract

Up to now the effect of the modulated thermal self-emission of Fourier-transform spectrometers has been investigated for emission measurements only. But this instrumental radiation also influences Fourier-transform absorption spectroscopy in the mid-IR when the Moon, a hot blackbody, or even the Sun is taken as a radiation source, e.g., by causing small negative radiance values in the center of saturated absorption lines. For our experimental investigations, a blackbody that can be cooled down to liquid-nitrogen temperature was constructed. Measurements at different temperatures of the blackbody and for different optical configurations in the detector port of the Fourier spectrometer as well as transmission measurements of gas cells are used to examine the statements above.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. La Porte, W. L. Smith, L. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  2. C. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
    [CrossRef] [PubMed]
  3. R. Schlipper, “Analyse der thermischen Eigenemission der optischen Komponenten des MIPAS-Flugzeugexperimentes,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 1994).
  4. M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meβkampagnen 1991/92 und 1992/93,” Ph.D. dissertation (Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, Karlsruhe, Germany, 1994).
  5. G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
    [CrossRef]
  6. J. Schreiber, “Untersuchung und Reduktion der Eigenstrahlung des Fourierspektrometers BOMEM-DA2,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum und Universität Karlsruhe, Karlsruhe, Germany, 1994).
  7. R. J. Chandos, R. F. Chandos, “Radiometric properties of isothermal, diffuse wall cavity sources,” Appl. Opt. 13, 2142–2152 (1974).
    [CrossRef] [PubMed]
  8. L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 1, pp. 13–14.

1994

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

1993

1988

1974

Adrian, G. P.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Baumann, M.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Blom, C. E.

Blumenstock, T.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Buijs, H.

Chandos, R. F.

Chandos, R. J.

Fischer, H.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Friedle, A.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Gerhardt, L.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Höpfner, M.

C. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
[CrossRef] [PubMed]

M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meβkampagnen 1991/92 und 1992/93,” Ph.D. dissertation (Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, Karlsruhe, Germany, 1994).

Howell, H. B.

La Porte, D. D.

Maucher, G.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 1, pp. 13–14.

Oelhaf, H.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Revercomb, H. E.

Scheuerpflug, W.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Schlipper, R.

R. Schlipper, “Analyse der thermischen Eigenemission der optischen Komponenten des MIPAS-Flugzeugexperimentes,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 1994).

Schreiber, J.

J. Schreiber, “Untersuchung und Reduktion der Eigenstrahlung des Fourierspektrometers BOMEM-DA2,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum und Universität Karlsruhe, Karlsruhe, Germany, 1994).

Smith, W. L.

Sromovsky, L.

Thomas, P.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Trieschmann, O.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Weddigen, C.

Wegner, A.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Appl. Opt.

Geophys. Res. Lett.

G. P. Adrian, M. Baumann, T. Blumenstock, H. Fischer, A. Friedle, L. Gerhardt, G. Maucher, H. Oelhaf, W. Scheuerpflug, P. Thomas, O. Trieschmann, A. Wegner, “First results of ground-based FTIR measurements of atmospheric trace gases in north Sweden and Greenland during EASOE,” Geophys. Res. Lett. 21, 1343–1346 (1994).
[CrossRef]

Other

J. Schreiber, “Untersuchung und Reduktion der Eigenstrahlung des Fourierspektrometers BOMEM-DA2,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum und Universität Karlsruhe, Karlsruhe, Germany, 1994).

L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 1, pp. 13–14.

R. Schlipper, “Analyse der thermischen Eigenemission der optischen Komponenten des MIPAS-Flugzeugexperimentes,” Diploma thesis (Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 1994).

M. Höpfner, “Das flugzeuggetragene Fernerkundungsexperiment MIPAS-FT: Auswertung und Interpretation der arktischen Meβkampagnen 1991/92 und 1992/93,” Ph.D. dissertation (Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, Karlsruhe, Germany, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Vectorial presentation of the complex Fourier transform S(κ) of double-sided interferograms and its spectral components in the complex plane for a fixed wave number κ: S b , complex spectrum of (balanced) emission from the input port; S u , complex spectrum of (unbalanced) emission from the detector port; S i , complex spectrum of emission assumed to originate from the beam splitter; S t , resulting complex spectrum of instrumental self-emission; S e , complex spectrum of incident radiation from an external source; S, resulting complex spectrum; ϕ, phase of detected spectrum S; ϕ r , differential phase of instrument.

Fig. 2
Fig. 2

Blackbody cooled with liquid nitrogen, temperature measurement with Pt-100.

Fig. 3
Fig. 3

Peak value of the interferogram as a function of the blackbody temperature: a, with an optical filter in the detector port; b, without a filter.

Fig. 4
Fig. 4

Complex spectral values recorded at different blackbody temperatures (from 79 to 295 K) S i . The purely imaginary component of instrumental self-emission is assumed to be thermal beam-splitter emission (compare with Fig. 1): a, measurements with an optical filter in the detector port at κ = 800 cm−1; b, measurements without a filter at κ = 800 cm−1; c, measurements with a filter at κ = 1000 cm−1; d, measurements without a filter at κ = 1000 cm−1.

Fig. 5
Fig. 5

Detail of transmission spectra of ammonia (140 hPa) in a gas cell (10 cm in length), obtained with a spectral resolution of 0.05 cm−1, with and without an optical bandpass filter in the detector port, and, in addition, with a combination of an optical filter and a gray filter (transmission 50%) in order to increase the radiation from the detector port and to demonstrate negative spectral values that are due to the emission from the detector port.

Fig. 6
Fig. 6

Detail of, a, a normalized solar spectrum; b, the associated phase spectrum ϕ(κ) obtained with an optical filter and a spectral resolution of 0.06 and 8 cm−1, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I b ( x , κ ) 2 | r t | 2 [ 1 + cos ( 2 π κ x ) ] ,
I u ( x , κ ) | r 2 | 2 + | t 2 | 2 2 | r 2 t 2 | cos ( 2 π κ x ) ,
I i ( x , κ ) bs [ 1 + | t | 2 + | r | 2 4 | r t | / π sin ( 2 π κ x ) ] ,
S ( κ ) exp [ i ϕ ( κ ) ] ,
S e + S b = S u .
S i S e + S b S u
L em ( 900 cm 1 ) = τ Ge B ( 900 cm 1 , 77 K ) + τ Ge ( 1 ) B ( 900 cm 1 , 297 K ) + ( 1 τ Ge ) B ( 900 cm 1 , 297 K ) + higher order terms 9.9 × 10 7 W / ( cm sr )

Metrics