Abstract

A holographic technique, which consists of writing a phase grating onto a photopolymer layer and recording the time evolution of its diffraction efficiency, is presented for a scattering hydrogel. The influence of photopolymer thickness and writing laser intensity is investigated. Writing parameters that yield maximum diffraction efficiency are determined. A thickness greater than 1/3 of the scattering length results in the diffusion of light in the sample, leading to a decreased diffraction efficiency of the grating. This behavior can be explained by a combination of chemical diffusion and optical scattering. Finally, a calibration of diffraction efficiency with respect to a gel and sol fraction is presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
    [CrossRef]
  2. C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
    [CrossRef]
  3. D. L. Kurdikar, N. A. Peppas, “A kinetic-study of diacrylate photopolymerizations,” Polymer 35, 1004–1011 (1994).
    [CrossRef]
  4. A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).
  5. C. Decker, K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules 22, 4455–4462 (1989).
    [CrossRef]
  6. A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
    [CrossRef] [PubMed]
  7. J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).
  8. A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
    [CrossRef]
  9. H. L. Xuan, C. Decker, “Photocrosslinking of acrylated natural rubber,” J. Polym. Sci. Polym. Chem. Ed. 31, 769–780 (1993).
    [CrossRef]
  10. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording II: self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
    [CrossRef]
  11. U. S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in Dupont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [CrossRef] [PubMed]
  12. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording III: time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
    [CrossRef]
  13. O. Jordan, F. Marquis-Weible, “Holographic control of hydrogel formation for biocompatible photopolymer,” in Biomedical Optoelectronics in Clinical Chemistry and Biotechnology, S. Andersson-Engels, ed., Proc. SPIE2629, 46–53 (1995).
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
  15. J. W. Pickering, S. A. Prahl, N. Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]

1995 (1)

1994 (4)

D. L. Kurdikar, N. A. Peppas, “A kinetic-study of diacrylate photopolymerizations,” Polymer 35, 1004–1011 (1994).
[CrossRef]

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
[CrossRef]

1993 (2)

1992 (2)

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording III: time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording II: self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

1989 (2)

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

C. Decker, K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules 22, 4455–4462 (1989).
[CrossRef]

1987 (1)

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

1982 (1)

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Bate, N. J.

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

Beek, J. F.

Braüchle, C.

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

Burland, D. M.

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

Carre, C.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Caulfield, H. J.

Chowdhury, S. M.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

Cundall, R. B.

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

Davies, A. K.

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

Decker, C.

H. L. Xuan, C. Decker, “Photocrosslinking of acrylated natural rubber,” J. Polym. Sci. Polym. Chem. Ed. 31, 769–780 (1993).
[CrossRef]

C. Decker, K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules 22, 4455–4462 (1989).
[CrossRef]

Dunn, R. C.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

Fouassier, J. P.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Hillwest, J. L.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

Hubbell, J. A.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
[CrossRef]

Jordan, O.

O. Jordan, F. Marquis-Weible, “Holographic control of hydrogel formation for biocompatible photopolymer,” in Biomedical Optoelectronics in Clinical Chemistry and Biotechnology, S. Andersson-Engels, ed., Proc. SPIE2629, 46–53 (1995).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Kurdikar, D. L.

D. L. Kurdikar, N. A. Peppas, “A kinetic-study of diacrylate photopolymerizations,” Polymer 35, 1004–1011 (1994).
[CrossRef]

Lougnot, D. J.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording II: self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording III: time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Marquis-Weible, F.

O. Jordan, F. Marquis-Weible, “Holographic control of hydrogel formation for biocompatible photopolymer,” in Biomedical Optoelectronics in Clinical Chemistry and Biotechnology, S. Andersson-Engels, ed., Proc. SPIE2629, 46–53 (1995).

Moussa, K.

C. Decker, K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules 22, 4455–4462 (1989).
[CrossRef]

Pathak, C. P.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
[CrossRef]

Peppas, N. A.

D. L. Kurdikar, N. A. Peppas, “A kinetic-study of diacrylate photopolymerizations,” Polymer 35, 1004–1011 (1994).
[CrossRef]

Pickering, J. W.

Prahl, S. A.

Rhee, U. S.

Sawhney, A. S.

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
[CrossRef]

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

Shamir, J.

Simpson, L. A.

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

Sterenborg, H. J. C. M.

Turck, C.

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording III: time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording II: self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

van Gemert, M. J. C.

Vanrensburg, J. J.

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

Vikram, C. S.

Wieringen, N.

Xuan, H. L.

H. L. Xuan, C. Decker, “Photocrosslinking of acrylated natural rubber,” J. Polym. Sci. Polym. Chem. Ed. 31, 769–780 (1993).
[CrossRef]

Appl. Opt. (2)

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Biotech. Bioeng. (1)

A. S. Sawhney, C. P. Pathak, J. A. Hubbell, “Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization,” Biotech. Bioeng. 44, 383–386 (1994).
[CrossRef]

J. Biomed. Mater. Res. (1)

A. S. Sawhney, C. P. Pathak, J. J. Vanrensburg, R. C. Dunn, J. A. Hubbell, “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention,” J. Biomed. Mater. Res. 28, 831–838 (1994).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

J. Polym. Sci. Polym. Chem. Ed. (1)

H. L. Xuan, C. Decker, “Photocrosslinking of acrylated natural rubber,” J. Polym. Sci. Polym. Chem. Ed. 31, 769–780 (1993).
[CrossRef]

J. Radiat. Curing (1)

A. K. Davies, R. B. Cundall, N. J. Bate, L. A. Simpson, “Kinetics of photoinitiated polymerization of monomer films by a dilatometric technique,” J. Radiat. Curing 14, 22–25 (1987).

Macromolecules (2)

C. Decker, K. Moussa, “Real-time kinetic study of laser-induced polymerization,” Macromolecules 22, 4455–4462 (1989).
[CrossRef]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Obstet. Gynecol. (1)

J. L. Hillwest, S. M. Chowdhury, A. S. Sawhney, C. P. Pathak, R. C. Dunn, J. A. Hubbell, “Prevention of postoperative adhesions in the rat by in-situ photopolymerization of bioresorbable hydrogel barriers,” Obstet. Gynecol. 83, 59–64 (1994).

Polymer (1)

D. L. Kurdikar, N. A. Peppas, “A kinetic-study of diacrylate photopolymerizations,” Polymer 35, 1004–1011 (1994).
[CrossRef]

Pure Appl. Opt. (2)

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording II: self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording III: time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Other (1)

O. Jordan, F. Marquis-Weible, “Holographic control of hydrogel formation for biocompatible photopolymer,” in Biomedical Optoelectronics in Clinical Chemistry and Biotechnology, S. Andersson-Engels, ed., Proc. SPIE2629, 46–53 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of experimental setup used for monitoring the growth of the holographic grating: S, photopolymer sample; P's, calibrated photodetectors (P0 records the transmitted intensity, P1 records the first-order diffracted intensity, and PW records the writing intensity).

Fig. 2
Fig. 2

Diffraction efficiency as a function of time for a 10-μm-thick photopolymer sample, pH = 7.4, for various writing intensities: (a) 0.033 W/cm2, (b) 0.2 W/cm2, (c) 1 W/cm2, (d) 5 W/cm2.

Fig. 3
Fig. 3

Diffraction efficiency as a function of time for various sample thicknesses. Writing laser intensity 1 W/cm2, photopoly-mer pH = 7.2.

Fig. 4
Fig. 4

Diffraction efficiency as a function of time for a 60-μm-thick photopolymer sample, pH = 7.4, for various writing intensities: (a) 0.033 W/cm2, (b) 0.2 W/cm2, (c) 1 W/cm2, (d) 5 W/cm2.

Fig. 5
Fig. 5

Diffraction efficiency of a 10-μm-thick sample (solid curve) and corresponding gel (○) and sol (△) fractions (dashed curves) as a function of irradiation time. t 90%: time necessary for reaching 90% of maximal diffraction efficiency. Photopolymer pH = 7.6.

Tables (1)

Tables Icon

Table 1 Maximum Diffraction Efficiency ηmax and Steady-State Diffraction Efficiency ηst for Different Sample Thicknesses at an Irradiation Intensity of 1 W/cm2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = sin 2 [ π d Δ n λ cos ( θ ) ] ,

Metrics