Abstract

It is shown, to our knowledge for the first time, that commercially available silver halide film emulsions may be used to record infrared radiation (10.6 μm) without the use of visible light as the coactivator. We present a film characterization study.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Frazier, T. D. Wilkerson, J. M. Lindsay, “Infrared photography at 5 μm and 10 μm,” Appl. Opt. 15, 1350–1352 (1976).
    [CrossRef] [PubMed]
  2. H. L. Gibson, Photography by Infrared (Wiley, New York, 1978), Chap. 10, p. 427.
  3. G. R. Mitchel, B. Grek, T. W. Johnston, F. Matin, H. Pépin, “Nanosecond photography at 10.6 μm using silver halide film,” Appl. Opt. 18, 2422–2426 (1979).
    [CrossRef] [PubMed]
  4. D. Naor, A. Flushberg, I. Itzkan, “Infrared laser photography with silver-halide emulsion,” Appl. Opt. 20, 2574–2584 (1981).
    [CrossRef] [PubMed]
  5. J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).
  6. J. Geary, D. Rabin, “Solar infrared presensitization photography,” Opt. Eng. 31, 2694–2696 (1992).
    [CrossRef]
  7. J. Geary, “Preliminary model for infrared presensitization photography,” Opt. Eng. 26, 337–341 (1987).
  8. J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974), Chap. 3, pp. 79–88.
  9. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, New York, 1993), Chap. 2, p. 14.
  10. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 3, p. 46.
  11. J. M. Meza, “Optical mechanisms for the improvement of interference fringe quality in addition in speckle pattern interferometry,” M. S. thesis (Centro de Investigaciones en Optica A.C., Mexico, 1994; in Spanish), Chap. 2, p. 33.

1992

J. Geary, D. Rabin, “Solar infrared presensitization photography,” Opt. Eng. 31, 2694–2696 (1992).
[CrossRef]

1987

J. Geary, “Preliminary model for infrared presensitization photography,” Opt. Eng. 26, 337–341 (1987).

1985

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

1981

1979

1976

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, New York, 1993), Chap. 2, p. 14.

Dainty, J. C.

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974), Chap. 3, pp. 79–88.

Deuto, B.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Duneman, D.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Flushberg, A.

Frazier, G. F.

Geary, J.

J. Geary, D. Rabin, “Solar infrared presensitization photography,” Opt. Eng. 31, 2694–2696 (1992).
[CrossRef]

J. Geary, “Preliminary model for infrared presensitization photography,” Opt. Eng. 26, 337–341 (1987).

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Gibson, H. L.

H. L. Gibson, Photography by Infrared (Wiley, New York, 1978), Chap. 10, p. 427.

Grek, B.

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 3, p. 46.

Itzkan, I.

Johnston, T. W.

Lindsay, J. M.

Matin, F.

Meza, J. M.

J. M. Meza, “Optical mechanisms for the improvement of interference fringe quality in addition in speckle pattern interferometry,” M. S. thesis (Centro de Investigaciones en Optica A.C., Mexico, 1994; in Spanish), Chap. 2, p. 33.

Mitchel, G. R.

Moeller, C.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Naor, D.

Pépin, H.

Rabin, D.

J. Geary, D. Rabin, “Solar infrared presensitization photography,” Opt. Eng. 31, 2694–2696 (1992).
[CrossRef]

Sessions, R.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Shaw, R.

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974), Chap. 3, pp. 79–88.

Vunck, D.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Wick, R.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

Wilkerson, T. D.

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 3, p. 46.

Appl. Opt.

Opt. Eng.

J. Geary, D. Vunck, B. Deuto, R. Sessions, D. Duneman, C. Moeller, R. Wick, “Applied infrared presensitization photography,” Opt. Eng. 24,332–337 (1985).

J. Geary, D. Rabin, “Solar infrared presensitization photography,” Opt. Eng. 31, 2694–2696 (1992).
[CrossRef]

J. Geary, “Preliminary model for infrared presensitization photography,” Opt. Eng. 26, 337–341 (1987).

Other

J. C. Dainty, R. Shaw, Image Science (Academic, New York, 1974), Chap. 3, pp. 79–88.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, New York, 1993), Chap. 2, p. 14.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 3, p. 46.

J. M. Meza, “Optical mechanisms for the improvement of interference fringe quality in addition in speckle pattern interferometry,” M. S. thesis (Centro de Investigaciones en Optica A.C., Mexico, 1994; in Spanish), Chap. 2, p. 33.

H. L. Gibson, Photography by Infrared (Wiley, New York, 1978), Chap. 10, p. 427.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement for IR recording.

Fig. 2
Fig. 2

Experimental arrangement to measure film density.

Fig. 3
Fig. 3

Infrared H&D curves for Kodak Tri-X Pan film (◆), Kodak Plus-X Pan film (*), and Kodak T-Max 100 film (+). Aluminum back support for heat release was used.

Fig. 4
Fig. 4

Infrared H&D curves for Kodak Plus-X Pan film. Aluminum (*) and air (+) thermal back supports were used.

Fig. 5
Fig. 5

Infrared film density-development time curve for Kodak Plus-X Pan film.

Fig. 6
Fig. 6

Infrared H&D curves for Kodak Plus-X Pan film (+) and Kodak SO-253 film (*).

Fig. 7
Fig. 7

Infrared H&D curves for Kodak SO-253 (*), Kodalith (◆), and Agfa Gevaert 10E75 (+) films.

Fig. 8
Fig. 8

Infrared H&D curves for Agfa Gevaert 10E75 film, either glass (*) or polyester (+) based.

Fig. 9
Fig. 9

Density–incident photon count curves for Kodak Plus-X Pan film for wavelengths of 514 nm (+) and 10.6 μm (*).

Fig. 10
Fig. 10

Infrared H&D curves for Kodak Plus-X Pan film, both theoretical (Q = 29, q = 10) (*) and experimental (+).

Fig. 11
Fig. 11

Infrared H&D curves for Kodak Plus-X Pan film, both theoretical (Q = 29, q = 17) (*) and experimental (+).

Tables (5)

Tables Icon

Table 1 Base-Plus-Fog Transmittances of Films and Plates

Tables Icon

Table 2 IR thresholds with Different Thermal Back Support Materials for Kodak Plus-X Pan Film

Tables Icon

Table 3 Development and Fixing Conditions (Room Temperature)

Tables Icon

Table 4 IR Useful Ranges for the Recording Process When no Support Is Used

Tables Icon

Table 5 Experimental and Theoretical Density Values for Kodak Plus-X Pan Film

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f = 1 exp ( q ) 0 Q 1 q r / r !
f = D / D max ,
R th = ( P / h ν ) t th .
R sat = ( P / h ν ) t sat .
R thIR / P IR = R th V / P V ,

Metrics