Abstract

A simple method for fabricating micromirrors and microlenses on polymer substrates is presented. Microelements with diameters of approximately several hundred micrometers and f numbers ranging from 3 to 11 have been produced.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Edward Motamadi, L. Beiser, eds. Micro-optics/Micromechanics and Laser Scanning and Shaping, Proc. SPIE2383 (1995). The whole volume is dedicated to micro-optics.
  2. Opt. Eng. 33 (11) (1994) has a section dedicated to micro-optics.
  3. Z. D. Popovic, R. A. Sprague, G. A. Neville Cornelli, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  4. S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
    [CrossRef]
  5. T. R. Jay, M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Opt. Eng. 33, 3552–3555 (1994).
    [CrossRef]
  6. W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
  7. N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef] [PubMed]
  8. J. M. Younse, “Mirrors on a chip,” IEEE Spectrum 30, 27–31 (Nov.1993).
    [CrossRef]
  9. D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
    [CrossRef]
  10. D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
    [CrossRef]
  11. S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin polymer films,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).
  12. M. S. Scholl, “Measured spatial properties of the cw Nd:YAG laser beam,” Appl. Opt. 19, 3655–3659 (1980).
    [CrossRef] [PubMed]
  13. D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.
  14. P. Mathey, R. Mercier, G. Pauliat, G. Rosen, Ph. Graver, “Photorefractive beam-steering system that uses energy transfer in a BaTiO3 crystal for a fiber-array interconnect,” Appl. Opt. 34, 8220–8229 (1995).
    [CrossRef] [PubMed]

1995 (1)

1994 (3)

Opt. Eng. 33 (11) (1994) has a section dedicated to micro-optics.

T. R. Jay, M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Opt. Eng. 33, 3552–3555 (1994).
[CrossRef]

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

1993 (2)

J. M. Younse, “Mirrors on a chip,” IEEE Spectrum 30, 27–31 (Nov.1993).
[CrossRef]

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

1988 (3)

1980 (1)

Allen, T. A.

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Borrelli, N. F.

Calixto, S.

S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin polymer films,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).

Chen, T.

W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).

Cox, W. R.

W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).

De Guel, G. R.

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Dogges, T. G.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Eaton, W. P.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Garcia, G. J.

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Graver, Ph.

Guel-Sandoval, S.

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Haselbeck, S.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Haues, D. J.

W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).

Jay, T. R.

T. R. Jay, M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Opt. Eng. 33, 3552–3555 (1994).
[CrossRef]

Kendall, D. L.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Manginell, R.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Mathey, P.

Mercier, R.

Morse, D. L.

Neville Cornelli, G. A.

Pauliat, G.

Popovic, Z. D.

Rosen, G.

Scholl, M. S.

Schreiber, H.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Schwider, J.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Sprague, R. A.

Stern, M. B.

T. R. Jay, M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Opt. Eng. 33, 3552–3555 (1994).
[CrossRef]

Streibl, N.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Ussery, D. W.

W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).

Younse, J. M.

J. M. Younse, “Mirrors on a chip,” IEEE Spectrum 30, 27–31 (Nov.1993).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

D. L. Kendall, G. R. De Guel, S. Guel-Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

IEEE Spectrum (1)

J. M. Younse, “Mirrors on a chip,” IEEE Spectrum 30, 27–31 (Nov.1993).
[CrossRef]

Opt. Eng. (4)

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2O micromachining of silicon for lenses templates, geodesic lenses, and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlens fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

T. R. Jay, M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Opt. Eng. 33, 3552–3555 (1994).
[CrossRef]

Opt. Eng. 33 (11) (1994) has a section dedicated to micro-optics.

Other (4)

D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.

W. R. Cox, D. J. Haues, T. Chen, D. W. Ussery, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. Edward Motamadi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).

S. Calixto, “Infrared recording and reconstruction of diffractive elements on thin polymer films,” in Photopolymer Device Physics, Chemistry, and Applications, R. A. Lessard, ed., Proc. SPIE1213, 32–38 (1990).

M. Edward Motamadi, L. Beiser, eds. Micro-optics/Micromechanics and Laser Scanning and Shaping, Proc. SPIE2383 (1995). The whole volume is dedicated to micro-optics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Layout of the recording setup used to fabricate micro-optical elements.

Fig. 2
Fig. 2

Profile given by a surface analyzer of an IR fabricated microlens. The diameter of the lens is ∼790 μm; the sagitta is ∼2.3 μm. The focal distance is ∼14 mm.

Fig. 3
Fig. 3

Profile of an IR fabricated micromirror.

Fig. 4
Fig. 4

Micromirror surface image given by an ordinary optical microscope. The image presents some out-of-focus areas because the element was tilted when the photograph was taken. The horizontal lines are scratches made by the tip of the surface analyzer instrument. The vertical lines are striations that probably were made during the substrate fabrication process.

Fig. 5
Fig. 5

Image given by an interference microscope of a circular IR irradiated zone and its surroundings. The circular zone has a diameter of ∼1550 μm. An enlargement of the central zone is shown in Fig. 6.

Fig. 6
Fig. 6

Enlargement of the central zone shown in Fig. 5. The circular interference fringes indicate that this region presents a well-behaved spherical profile.

Fig. 7
Fig. 7

Off-axis image given by a micromirror when the object is ∼90 cm from it. The image was photographed through a low-power microscope.

Fig. 8
Fig. 8

Image given by a microlens. The object is placed ∼90 cm from the microelement. A low-power microscope was used to take the photograph.

Fig. 9
Fig. 9

Image given by an ordinary microscope when the surface of a micromirror was investigated. Part of the image is out-of-focus because the microelement was tilted with respect to the optical axis of the microscope. Striations, seen as vertical lines, possibly were made during the fabrication process of the polystyrene.

Fig. 10
Fig. 10

Interference pattern of a micromirror showing a focal distance of ∼0.9 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = D 2 / 16 S ,

Metrics