Abstract

A linear InGaAs array was used in an interference filter spectral imager to monitor the twilight decay of the O2 Infrared Atmospheric (0–1) band in the twilight airglow. The interference filter was centered at 1.582 μm and had a bandwidth (full width at half-maximum) of 1.0 nm. The imaging lens was a simple doublet, and a Fresnel lens was used for smearing any possible sky inhomogeneities. Spectra measured over Toronto in October 1994 show that the sensitivity and spectral discrimination against the contaminating OH spectrum are potentially sufficient to infer meaningful rotational temperatures. The improvements that would result from an area InGaAs array are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
    [CrossRef]
  2. Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).
  3. W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
    [CrossRef]
  4. F. J. Mulligan, J. M. Galligan, “Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2 °N, 6.4 °W),” Ann. Geophys. 13, 558– 566 (1995).
  5. R. L. Gattinger, Synthetic Spectra of Airglow Emitters (Herzberg Institute of Astrophysics, Ottawa, 1984).
  6. R. J. Sica, “Inferring middle atmospheric ozone height profiles from ground-based measurements of molecular oxygen emission rates 3. Can twilight measurements of the atmospheric band be used to retrieve an ozone density profile?” J. Geophys. Res. 98, 1057–1067 (1993).
    [CrossRef]
  7. M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
    [CrossRef]
  8. M. W. P. Cann, R. W. Nicholls, “CN189: A synthetic spectrum program for atmospheric applications in the infrared spectral region,” DSS rep. 8SD82-00071 (York U., North York, Canada, 1986).
  9. F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
    [CrossRef] [PubMed]
  10. R. L. Gattinger, “Observation and interpretation of the O2 (1Δg–1∑g−) airglow emissions,” Can. J. Phys. 46, 1613–1626 (1968).
    [CrossRef]

1995 (2)

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

F. J. Mulligan, J. M. Galligan, “Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2 °N, 6.4 °W),” Ann. Geophys. 13, 558– 566 (1995).

1994 (1)

1993 (1)

R. J. Sica, “Inferring middle atmospheric ozone height profiles from ground-based measurements of molecular oxygen emission rates 3. Can twilight measurements of the atmospheric band be used to retrieve an ozone density profile?” J. Geophys. Res. 98, 1057–1067 (1993).
[CrossRef]

1991 (1)

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

1989 (1)

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

1970 (1)

W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
[CrossRef]

1968 (1)

R. L. Gattinger, “Observation and interpretation of the O2 (1Δg–1∑g−) airglow emissions,” Can. J. Phys. 46, 1613–1626 (1968).
[CrossRef]

Bahsoun-Hamade, F.

Cann, M. W. P.

M. W. P. Cann, R. W. Nicholls, “CN189: A synthetic spectrum program for atmospheric applications in the infrared spectral region,” DSS rep. 8SD82-00071 (York U., North York, Canada, 1986).

Evans, W. F. J.

W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
[CrossRef]

Galligan, J. M.

F. J. Mulligan, J. M. Galligan, “Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2 °N, 6.4 °W),” Ann. Geophys. 13, 558– 566 (1995).

Gattinger, R. L.

R. L. Gattinger, “Observation and interpretation of the O2 (1Δg–1∑g−) airglow emissions,” Can. J. Phys. 46, 1613–1626 (1968).
[CrossRef]

R. L. Gattinger, Synthetic Spectra of Airglow Emitters (Herzberg Institute of Astrophysics, Ottawa, 1984).

Llewellyn, E. J.

W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
[CrossRef]

Lopez-Gonzalez, M. J.

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

Lopez-Moreno, J. J.

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

Lopez-Valverde, M. A.

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

Ma, Y.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

McDade, I. C.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

Moise, A.

Mulligan, F. J.

F. J. Mulligan, J. M. Galligan, “Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2 °N, 6.4 °W),” Ann. Geophys. 13, 558– 566 (1995).

Nicholls, R. W.

M. W. P. Cann, R. W. Nicholls, “CN189: A synthetic spectrum program for atmospheric applications in the infrared spectral region,” DSS rep. 8SD82-00071 (York U., North York, Canada, 1986).

Peterson, R. N.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

Rodrigo, R.

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

Shepherd, G. G.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
[CrossRef] [PubMed]

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

Sica, R. J.

R. J. Sica, “Inferring middle atmospheric ozone height profiles from ground-based measurements of molecular oxygen emission rates 3. Can twilight measurements of the atmospheric band be used to retrieve an ozone density profile?” J. Geophys. Res. 98, 1057–1067 (1993).
[CrossRef]

Wiens, R. H.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

F. Bahsoun-Hamade, R. H. Wiens, A. Moise, G. G. Shepherd, “Imaging Fabry–Perot spectrometer for twilight observations,” Appl. Opt. 33, 1100–1107 (1994).
[CrossRef] [PubMed]

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

Wood, H. C.

W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
[CrossRef]

Zhang, S. P.

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

Ann. Geophys. (2)

Y. Ma, R. N. Peterson, S. P. Zhang, I. C. McDade, R. H. Wiens, G. G. Shepherd, “Interference filter spectral imaging of twilight O+(2P–2D) emission,” Ann. Geophys. 13, 189–195 (1995).

F. J. Mulligan, J. M. Galligan, “Mesopause temperatures calculated from the O2(a1Δg) twilight airglow emission recorded at Maynooth (53.2 °N, 6.4 °W),” Ann. Geophys. 13, 558– 566 (1995).

Appl. Opt. (1)

Can. J. Phys. (2)

R. L. Gattinger, “Observation and interpretation of the O2 (1Δg–1∑g−) airglow emissions,” Can. J. Phys. 46, 1613–1626 (1968).
[CrossRef]

W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Transmission of the infrared oxygen emission at 1.27 μ in the atmosphere,” Can. J. Phys. 48, 747–752 (1970).
[CrossRef]

J. Geophys. Res. (1)

R. J. Sica, “Inferring middle atmospheric ozone height profiles from ground-based measurements of molecular oxygen emission rates 3. Can twilight measurements of the atmospheric band be used to retrieve an ozone density profile?” J. Geophys. Res. 98, 1057–1067 (1993).
[CrossRef]

Planet. Space Sci. (2)

M. J. Lopez-Gonzalez, J. J. Lopez-Moreno, M. A. Lopez-Valverde, R. Rodrigo, “Behavior of the O2 Infrared Atmospheric (0–0) band in the middle atmosphere during evening twilight and at night,” Planet. Space Sci. 37, 61–72 (1989).
[CrossRef]

R. H. Wiens, S. P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1365 (1991).
[CrossRef]

Other (2)

M. W. P. Cann, R. W. Nicholls, “CN189: A synthetic spectrum program for atmospheric applications in the infrared spectral region,” DSS rep. 8SD82-00071 (York U., North York, Canada, 1986).

R. L. Gattinger, Synthetic Spectra of Airglow Emitters (Herzberg Institute of Astrophysics, Ottawa, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Synthetic spectrum of the O2 IRA (0–1) band. The upper figure is without instrument broadening, the lower with 1-nm broadening. Note the maximum intensity difference between the 200- and 400-K spectra near 1.575 μm.

Fig. 2
Fig. 2

Geometry of twilight observations. During twilight the daytime emission profile erodes upward to reduce to the nighttime profile. Theoretical intermediate profiles are shown with solar depression angles marked in the lower figure from Ref. 6.

Fig. 3
Fig. 3

Optical configuration of the interference filter spectral imager. The InGaAs array detector is centered across the ring pattern at bottom.

Fig. 4
Fig. 4

Measured and fitted synthetic spectra for three solar depression angles (SDA) on 15 October 1994. The position of the contaminating OH spectrum relative to the O2 IRA band is shown in the inset. An error bar for individual pixel readings is shown in the upper right.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

O 3 + h v ( λ < 310 nm ) O 2 ( a 1 Δ g ) + O ( 1 D ) ,
sin θ = μ [ 1 ( λ λ 0 ) 2 ] 1 / 2
S = A Ω τ q 10 6 photons 4 π cm 2 sr s Å .

Metrics