Abstract

Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rutledge, D. Neikirk, D. Kasilingham, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.
  2. E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
    [CrossRef]
  3. C. Karadi, J. Jauhar, L. Kouwenhoven, K. Wald, J. Orenstein, P. McEuen, Y. Nagamune, H. Sakaki, “Dynamic response of a quantum point contact,” J. Opt. Soc. Am. B 11, 2566–2571 (1994).
    [CrossRef]
  4. S. Park, R. Schowengerdt, M. Kaczynski, “Modulation-transfer-function analysis for sampled image systems,” Appl. Opt. 23, 2572–2582 (1984).
    [CrossRef] [PubMed]
  5. E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
    [CrossRef]
  6. K. Barnard, E. Watson, “Effects of image noise on submicroscan interpolation,” Opt. Eng. 34, 3165–3173 (1995).
    [CrossRef]
  7. G. Boreman, A. Plogstedt, “Spatial filtering by a line-scanned nonrectangular detector—application to SPRITE readout MTF,” Appl. Opt. 28, 1165–1168 (1989).
    [CrossRef] [PubMed]
  8. G. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Dipole-on-dielectric model for infrared lithographic spiral antennas,” Opt. Lett. 21, 309–311 (1996).
    [CrossRef] [PubMed]
  9. J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
    [CrossRef]
  10. J. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8, 312–323 (1960).
    [CrossRef]
  11. H. Nakano, Helical and Spiral Antennas (Wiley, New York, 1987), p. 111.
  12. J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 77.
  13. K. Lee, Principles of Antenna Theory (Wiley, New York, 1984), pp. 85–106.
  14. G. Borgiotti, “A novel expression for the mutual admittance of planar radiating elements,” IEEE Trans. Antennas Propag. 16, 329–333 (1968).
    [CrossRef]
  15. W. Wasylkiwskyj, W. Kahn, “Theory of mutual coupling among minimum scattering antennas,” IEEE Trans. Antennas Propag. 18, 204–216 (1970).
    [CrossRef]
  16. C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
    [CrossRef]
  17. D. Rutledge, M. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–537 (1982).
    [CrossRef]
  18. J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 300.

1996 (1)

1995 (1)

K. Barnard, E. Watson, “Effects of image noise on submicroscan interpolation,” Opt. Eng. 34, 3165–3173 (1995).
[CrossRef]

1994 (1)

1991 (1)

E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

1990 (1)

E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
[CrossRef]

1989 (1)

1984 (1)

1982 (1)

D. Rutledge, M. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–537 (1982).
[CrossRef]

1981 (1)

C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

1970 (1)

W. Wasylkiwskyj, W. Kahn, “Theory of mutual coupling among minimum scattering antennas,” IEEE Trans. Antennas Propag. 18, 204–216 (1970).
[CrossRef]

1968 (1)

G. Borgiotti, “A novel expression for the mutual admittance of planar radiating elements,” IEEE Trans. Antennas Propag. 16, 329–333 (1968).
[CrossRef]

1960 (1)

J. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8, 312–323 (1960).
[CrossRef]

1959 (1)

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

Barnard, K.

K. Barnard, E. Watson, “Effects of image noise on submicroscan interpolation,” Opt. Eng. 34, 3165–3173 (1995).
[CrossRef]

Boreman, G.

Borgiotti, G.

G. Borgiotti, “A novel expression for the mutual admittance of planar radiating elements,” IEEE Trans. Antennas Propag. 16, 329–333 (1968).
[CrossRef]

Brewitt-Taylor, C.

C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Christodoulou, C.

Dogariu, A.

Dyson, J.

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

Gaskill, J.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 77.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 300.

Grossman, E.

E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
[CrossRef]

Gunton, D.

C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Jauhar, J.

Kaczynski, M.

Kahn, W.

W. Wasylkiwskyj, W. Kahn, “Theory of mutual coupling among minimum scattering antennas,” IEEE Trans. Antennas Propag. 18, 204–216 (1970).
[CrossRef]

Kaiser, J.

J. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8, 312–323 (1960).
[CrossRef]

Karadi, C.

Kasilingham, D.

D. Rutledge, D. Neikirk, D. Kasilingham, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

Kotter, D.

Kouwenhoven, L.

Lee, K.

K. Lee, Principles of Antenna Theory (Wiley, New York, 1984), pp. 85–106.

McDonald, D.

E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
[CrossRef]

McEuen, P.

Muha, M.

D. Rutledge, M. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–537 (1982).
[CrossRef]

Nagamune, Y.

Nakano, H.

H. Nakano, Helical and Spiral Antennas (Wiley, New York, 1987), p. 111.

Neikirk, D.

D. Rutledge, D. Neikirk, D. Kasilingham, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

Orenstein, J.

Park, S.

Plogstedt, A.

Rees, H.

C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

Rutledge, D.

D. Rutledge, M. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–537 (1982).
[CrossRef]

D. Rutledge, D. Neikirk, D. Kasilingham, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

Sakaki, H.

Sauvageau, J.

E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
[CrossRef]

Schowengerdt, R.

Wald, K.

Wasylkiwskyj, W.

W. Wasylkiwskyj, W. Kahn, “Theory of mutual coupling among minimum scattering antennas,” IEEE Trans. Antennas Propag. 18, 204–216 (1970).
[CrossRef]

Watson, E.

K. Barnard, E. Watson, “Effects of image noise on submicroscan interpolation,” Opt. Eng. 34, 3165–3173 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Grossman, J. Sauvageau, D. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Electron. Lett. (1)

C. Brewitt-Taylor, D. Gunton, H. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–731 (1981).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

D. Rutledge, M. Muha, “Imaging antenna arrays,” IEEE Trans. Antennas Propag. 30, 535–537 (1982).
[CrossRef]

G. Borgiotti, “A novel expression for the mutual admittance of planar radiating elements,” IEEE Trans. Antennas Propag. 16, 329–333 (1968).
[CrossRef]

W. Wasylkiwskyj, W. Kahn, “Theory of mutual coupling among minimum scattering antennas,” IEEE Trans. Antennas Propag. 18, 204–216 (1970).
[CrossRef]

IRE Trans. Antennas Propag. (2)

J. Dyson, “The equiangular spiral antenna,” IRE Trans. Antennas Propag. 7, 181–187 (1959).
[CrossRef]

J. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8, 312–323 (1960).
[CrossRef]

J. Appl. Phys. (1)

E. Grossman, D. McDonald, J. Sauvageau, “Two-dimensional analysis of microbolometer arrays,” J. Appl. Phys. 68, 5409–5414 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

K. Barnard, E. Watson, “Effects of image noise on submicroscan interpolation,” Opt. Eng. 34, 3165–3173 (1995).
[CrossRef]

Opt. Lett. (1)

Other (5)

D. Rutledge, D. Neikirk, D. Kasilingham, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10, pp. 1–90.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 300.

H. Nakano, Helical and Spiral Antennas (Wiley, New York, 1987), p. 111.

J. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 77.

K. Lee, Principles of Antenna Theory (Wiley, New York, 1984), pp. 85–106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Power radiation pattern of the dipole antenna as a function of θ and φ.

Fig. 2
Fig. 2

Power radiation pattern of the dipole antenna along three cuts: θ = 0, φ = 0, and a diagonal cut corresponding to the pattern's maximum radial extent. Also shown is the envelope function Pe (θ).

Fig. 3
Fig. 3

Pixel PSF for a classical detector of full width 4.5λ along with best- and worst-case pixel PSF's for antenna-coupled detectors.

Fig. 4
Fig. 4

Pixel MTF for a classical detector of full width 4.5λ along with best- and worst-case pixel MTF's for antenna-coupled detectors.

Fig. 5
Fig. 5

System MTF's for a standard (f/2 optics and sample spacing of 5λ) system. Included in these system MTF's are the pixel MTF's seen in Fig. 4 for a classical detector of full width 4.5λ along with best- and worst-case pixel MTF's for antenna-coupled detectors.

Fig. 6
Fig. 6

System MTF's for an enhanced (f/1 optics and sample spacing of 2.5λ) system. Included in these system MTF's are the pixel MTF's seen in Fig. 4 for a classical detector of full width 4.5λ along with best- and worst-case pixel MTF's for antenna-coupled detectors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Z 12 ( s / λ ) = Z 0 0 2 π j 1 exp [ j 2 π ( s / λ ) cos θ ] × P ( cos θ , φ ) d φ d ( cos θ ) ,
P θ ( θ ) = P θ ( 0 ) | n cos [ sin 1 ( n sin θ ) ] cos θ n cos [ sin 1 ( n sin θ ) ] + cos θ | 2 ,
P φ ( φ ) = P φ ( 0 ) { n cos φ | cos [ sin 1 ( n sin φ ) ] + n cos φ | } 2 .
P t ( t ) = P t ( 1 ) | n cos { sin 1 [ n ( 1 t 2 ) 1 / 2 ] } t n cos { sin 1 [ n ( 1 t 2 ) 1 / 2 ] + t | 2
Z 12 ( s / λ ) = Z 0 0 2 π P ( φ ) d φ { j 0 exp [ j 2 π ( s / λ ) t ] × P t ( t ) d t + 0 1 exp [ j 2 π ( s / λ ) t ] P t ( t ) d t } .
P e ( θ ) = 15 ( cos 2 θ ) 1 / 2 + m = 0 10 2.4 1.2 m × ( { cos [ 6 ( θ π 3 + m ) ] } 1 / 2 + { cos [ 6 ( θ + π 3 + m ) ] } 1 / 2 ) ,

Metrics