Abstract

We used a microcomputer-controlled total ozone portable spectroradiometer instrument #21 (MTOPS21) to measure solar radiation at 298, 304 and 310 nm in Greenbelt, Md., during 1995. One day’s ozone measurements from a Brewer instrument (B105) were used to calibrate the 304- and 310-nm channel ratios to a theoretical model. Total ozone estimates were then determined for the entire MTOPS21 data set. Differences between individual B105 and MTOPS21 ozone estimates show a 1% drop as solar zenith angles increase and depend on atmospheric attenuation and SO2 variation at the ±2% level. Daily average values agree well (<0.5% average offset, 2% standard deviation).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. World Meteorological Organisation, Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project, Rep. No. 37 (World Meteorological Organisation, Geneva, 1995), and references therein.
  2. F. M. Mims, “How to measure the ozone layer,” Sci. Probe 2, 45–51 (1992).
  3. L. E. Flynn, G. J. Labow, R. A. Beach, M. A. Rawlins, D. E. Flittner, “Estimation of ozone with total ozone portable spectroradiometer instruments. I. Theoretical model and error analysis,” Appl. Opt. 35, 6076–6083 (1996).
    [CrossRef] [PubMed]
  4. J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3 and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation, Toronto, Ont. (American Meteorological Society, Boston, Mass., 1983) pp. 470–472.
  5. J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.
  6. W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
    [CrossRef]
  7. J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
    [CrossRef]
  8. M. Morys, Solar Light Company, Philadelphia, Pa. (personal communication, 1996).

1996 (1)

1992 (1)

F. M. Mims, “How to measure the ozone layer,” Sci. Probe 2, 45–51 (1992).

1988 (2)

W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
[CrossRef]

J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
[CrossRef]

Ashbridge, I. A.

J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
[CrossRef]

Beach, R. A.

Cleveland, W. S.

W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
[CrossRef]

Devlin, S. J.

W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
[CrossRef]

Evans, W. F. J.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3 and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation, Toronto, Ont. (American Meteorological Society, Boston, Mass., 1983) pp. 470–472.

Evans, W. J. F.

J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
[CrossRef]

Flittner, D. E.

Flynn, L. E.

Grosse, E.

W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
[CrossRef]

Kerr, J. B.

J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
[CrossRef]

J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3 and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation, Toronto, Ont. (American Meteorological Society, Boston, Mass., 1983) pp. 470–472.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

Labow, G. J.

McElroy, C. T.

J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3 and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation, Toronto, Ont. (American Meteorological Society, Boston, Mass., 1983) pp. 470–472.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

Mims, F. M.

F. M. Mims, “How to measure the ozone layer,” Sci. Probe 2, 45–51 (1992).

Morys, M.

M. Morys, Solar Light Company, Philadelphia, Pa. (personal communication, 1996).

Olafson, R. A.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

Rawlins, M. A.

Wardle, D. I.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

Appl. Opt. (1)

J. Econometrics (1)

W. S. Cleveland, S. J. Devlin, E. Grosse, “Regression by local fitting: methods, properties, and computational algorithms,” J. Econometrics 37, 87–114 (1988).
[CrossRef]

J. Geophys. Res. (1)

J. B. Kerr, I. A. Ashbridge, W. J. F. Evans, “Intercomparisons of total ozone measured by the Brewer and Dobson spectrophotometers at Toronto,” J. Geophys. Res. 93(D9), 11129–11140 (1988).
[CrossRef]

Sci. Probe (1)

F. M. Mims, “How to measure the ozone layer,” Sci. Probe 2, 45–51 (1992).

Other (4)

J. B. Kerr, C. T. McElroy, W. F. J. Evans, “The automated Brewer spectrophotometer for measurement of SO2, O3 and aerosols,” in the Proceedings of the WMO/AMS/CMOS Symposium on Meteorological Observations and Instrumentation, Toronto, Ont. (American Meteorological Society, Boston, Mass., 1983) pp. 470–472.

J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson, W. F. J. Evans, “The automated Brewer spectrophotometer,” in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, Halkidiki, Greece, September 1984, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1985) pp. 396–401.

M. Morys, Solar Light Company, Philadelphia, Pa. (personal communication, 1996).

World Meteorological Organisation, Scientific Assessment of Ozone Depletion: 1994, Global Ozone Research and Monitoring Project, Rep. No. 37 (World Meteorological Organisation, Geneva, 1995), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Measured counts for the 298-nm channel versus secant SZA. Solid curves connect measurements for 9 July 1995. (b) Same format as in (a) except for the 304-nm channel. (c) Same format as in (a) except for the 310-nm channel.

Fig. 2
Fig. 2

(a) Ratios of the 298-nm channel counts to the 304-nm channel counts versus secant SZA. The solid curves connect 9 July 1995 measurements. The dotted line is the theoretical model for a 310-DU column of ozone. The dashed curve is the theoretical model with stray-light contamination. (b) Same format as in (a) except for the ratios of the 304-nm counts to the 310-nm counts.

Fig. 3
Fig. 3

Ratios of the measured ratios of the 304-nm counts to the 310-nm counts to the modeled ratios of the 304-nm counts to the 310-nm counts for 20 July 1995 versus secant SZA. The modeled counts use ozone estimates from B105.

Fig. 4
Fig. 4

(a) Daily average time series for microTOPS (× and solid curve) and Brewer (△ and dotted curve) column ozone estimates. (b) Summary of percent differences between MTOPS21 and B105 ozone estimates for all match-up data binned by day. The dual error bars give the standard deviations and standard errors of each day’s differences.

Fig. 5
Fig. 5

Summary of percent differences between MTOPS21 and B105 ozone estimates for all match-up data binned by secant SZA. The error bars give the standard deviations of each 0.1-sec(SZA) bin’s differences. The solid curve is a LOESS fit of the individual data, and the dotted curves are its 95% confidence limits.

Fig. 6
Fig. 6

(a) Time series of daily averaged SO2 estimates from B105. (b) Summary of B105 SO2 estimates for all match-up data binned by secant SZA. The error bars give the standard deviations of each 0.2-sec(SZA) bin’s SO2 estimates. The solid curve is a LOESS fit of the individual data, and the dotted curves are its 95% confidence limits.

Fig. 7
Fig. 7

(a) Summary of percent differences between MTOPS21 and B105 ozone estimates for all match-up data binned by the attenuation factor. The error bars give the standard deviations of each 15% attenuation bin’s differences. The solid curve is a LOESS fit of the individual data, and the dotted curves are its 95% confidence limits. (b) Scatterplot of attenuation factor versus secant SZA for all microTOPS data. The solid curves connect the data for four individual days, both a.m. and p.m.

Metrics