Abstract

Experimental investigations of acoustic signals generated by individual laser-irradiated water droplets are reported. The dependence of droplet destruction thresholds on droplet radius and radiative heating rate is determined. A theoretical explanation of our experimental results is provided in terms of a model that includes the processes of droplet evaporation and fragmentation in response to intense laser heating.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Latifi, J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, R. G. Pinnick, “Multiple superheating thresholds of micrometer-sized droplets irradiated by pulses CO2 lasers,” Opt. Lett. 16, 1129–1131 (1991).
    [CrossRef] [PubMed]
  2. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernández, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. 29, 918–925 (1990).
    [CrossRef] [PubMed]
  3. V. Ya Korovin, E. V. Ivanov, “Experimental investigation of CO2-laser-water aerosol interaction,” presented at the 3rd All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Tomsk, Russia, 3–7 June 1985, pp. 93–94.
  4. V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).
  5. H. S. Kwok, T. M. Rossi, W. S. Lau, D. T. Shaw, “Enhanced transmission in CO2-laser–aerosol interactions,” Opt. Lett. 13, 192–194 (1988).
    [CrossRef] [PubMed]
  6. A. A. Zemlyanov, A. M. Kabanov, “Light scattering signals from a model water droplet aerosol preirradiated by high power CO2 laser radiation pulses,” Atmos. Opt. 4, 691–694 (1991).
  7. J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).
  8. P. Kafalas, C. P. Ferdinand, “Fog droplet vaporization and fragmentation by a 10.6 um laser pulse,” Appl. Opt. 12, 29–34 (1973).
    [CrossRef] [PubMed]
  9. P. I. Singh, C. P. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1988).
    [CrossRef]
  10. V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 256.
  11. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).
  12. O. A. Volkovitzkii, Yu. S. Sedunov, L. P. Semenov, Propagation of Laser Radiation in Clouds (Gidrometeoizdat, Leningrad, 1982), p. 336.
  13. A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

1991 (2)

H. Latifi, J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, R. G. Pinnick, “Multiple superheating thresholds of micrometer-sized droplets irradiated by pulses CO2 lasers,” Opt. Lett. 16, 1129–1131 (1991).
[CrossRef] [PubMed]

A. A. Zemlyanov, A. M. Kabanov, “Light scattering signals from a model water droplet aerosol preirradiated by high power CO2 laser radiation pulses,” Atmos. Opt. 4, 691–694 (1991).

1990 (1)

1988 (4)

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

P. I. Singh, C. P. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1988).
[CrossRef]

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

H. S. Kwok, T. M. Rossi, W. S. Lau, D. T. Shaw, “Enhanced transmission in CO2-laser–aerosol interactions,” Opt. Lett. 13, 192–194 (1988).
[CrossRef] [PubMed]

1985 (1)

A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

1977 (1)

V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).

1973 (1)

Armstrong, R. L.

Autric, M.

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

Biswas, A.

Caressa, J. P.

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

Dufresne, D.

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

Ferdinand, C. P.

Fernández, G.

Geints, Yu. E.

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

Ivanov, E. V.

V. Ya Korovin, E. V. Ivanov, “Experimental investigation of CO2-laser-water aerosol interaction,” presented at the 3rd All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Tomsk, Russia, 3–7 June 1985, pp. 93–94.

Jennings, S. G.

Kabanov, A. M.

A. A. Zemlyanov, A. M. Kabanov, “Light scattering signals from a model water droplet aerosol preirradiated by high power CO2 laser radiation pulses,” Atmos. Opt. 4, 691–694 (1991).

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

Kafalas, P.

Khmelevtsov, S. S.

V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).

Knight, C. P.

P. I. Singh, C. P. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1988).
[CrossRef]

Kopytin, Yu. D.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 256.

Kwok, H. S.

Latifi, H.

Lau, W. S.

Nebol’sin, M. F.

A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

Pendleton, J. D.

Pinnick, R. G.

Pogodaev, V. A.

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).

Rossi, T. M.

Rozhdestvenskii, A. E.

V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).

Ruekgauer, T. E.

Sedunov, Yu. S.

O. A. Volkovitzkii, Yu. S. Sedunov, L. P. Semenov, Propagation of Laser Radiation in Clouds (Gidrometeoizdat, Leningrad, 1982), p. 336.

Semenov, L. P.

O. A. Volkovitzkii, Yu. S. Sedunov, L. P. Semenov, Propagation of Laser Radiation in Clouds (Gidrometeoizdat, Leningrad, 1982), p. 336.

Shaw, D. T.

Singh, P. I.

P. I. Singh, C. P. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1988).
[CrossRef]

Vigliano, P.

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

Volkovitzkii, O. A.

O. A. Volkovitzkii, Yu. S. Sedunov, L. P. Semenov, Propagation of Laser Radiation in Clouds (Gidrometeoizdat, Leningrad, 1982), p. 336.

Xie, J.-G.

Ya Korovin, V.

V. Ya Korovin, E. V. Ivanov, “Experimental investigation of CO2-laser-water aerosol interaction,” presented at the 3rd All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Tomsk, Russia, 3–7 June 1985, pp. 93–94.

Zemlyanov, A. A.

A. A. Zemlyanov, A. M. Kabanov, “Light scattering signals from a model water droplet aerosol preirradiated by high power CO2 laser radiation pulses,” Atmos. Opt. 4, 691–694 (1991).

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 256.

Zuev, V. E.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 256.

AIAA J. (2)

J. P. Caressa, M. Autric, P. Vigliano, D. Dufresne, “Pulsed CO2 laser-induced effects on water droplets,” AIAA J. 29, 192–194 (1988).

P. I. Singh, C. P. Knight, “Pulsed laser-induced shattering of water drops,” AIAA J. 18, 96–100 (1988).
[CrossRef]

Appl. Opt. (2)

Atmos. Opt. (2)

A. A. Zemlyanov, A. M. Kabanov, “Light scattering signals from a model water droplet aerosol preirradiated by high power CO2 laser radiation pulses,” Atmos. Opt. 4, 691–694 (1991).

Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, V. A. Pogodaev, “Semiempirical model of water aerosol particle destruction by laser pulses,” Atmos. Opt. 1, 39, (1988).

Kvantovaya Elektron. (Moscow) (1)

V. A. Pogodaev, A. E. Rozhdestvenskii, S. S. Khmelevtsov, “Thermal explosion of water particles on exposure to the high-power laser radiation,” Kvantovaya Elektron. (Moscow) 4, 157–159 (1977).

Opt. Lett. (2)

Zh. Tekh. Fiz. (1)

A. A. Zemlyanov, M. F. Nebol’sin, V. A. Pogodaev, “Clearing up of fog droplets irradiated with pulses CO2 laser,” Zh. Tekh. Fiz. 55, 791–793 (1985).

Other (3)

O. A. Volkovitzkii, Yu. S. Sedunov, L. P. Semenov, Propagation of Laser Radiation in Clouds (Gidrometeoizdat, Leningrad, 1982), p. 336.

V. E. Zuev, A. A. Zemlyanov, Yu. D. Kopytin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 256.

V. Ya Korovin, E. V. Ivanov, “Experimental investigation of CO2-laser-water aerosol interaction,” presented at the 3rd All-Union Symposium on Laser Radiation Propagation in the Atmosphere, Tomsk, Russia, 3–7 June 1985, pp. 93–94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of experimental setup: 1 and 2, CO2 laser and Nd:YAG laser, irradiating the droplet; 3, Nd:YAG laser to generate air plasma; 4, droplet generator; 5 and 6, acoustic detector with preamplifier; 7, oscilloscope; 8, microscope with camera; 9, time synchronization system.

Fig. 2
Fig. 2

Dependence of acoustic pressure P on laser fluence for different aerosol radii: 1, a0 = 15 μm; 2, 49 μm; 3, 92 μm; 4, plane surface.

Fig. 3
Fig. 3

Dependence of destruction threshold fluence Edes on initial particle radius a0.

Fig. 4
Fig. 4

Acoustic pressure from Nigrosine particle, a0 = 50 μm, versus Nd:YAG laser fluence (λ = 0.53 μm, κ = 103).

Fig. 5
Fig. 5

Explosion (filled symbols) and destruction (open symbols) thresholds, obtained by various researchers, for water droplets irradiated by a CO2 laser versus initial droplet radius: ○, Ref. 3; ▲, Ref. 4; △, Ref. 5; ◇, Ref. 6; ◆, Ref. 2; ■, Ref. 7; □, this study; ▼, Ref. 8; ●, Ref. 9.

Fig. 6
Fig. 6

Dependence of destruction threshold Edes on heating rate: ●, a0 = 15 μm; ▲, 20 μm; ■, 30 μm.

Fig. 7
Fig. 7

Temperature profile along the principle diameter of a 48-μm water droplet irradiated by a CO2 laser at times corresponding to local explosions, labeled sequentially.

Fig. 8
Fig. 8

Dependence of evaporation efficiency β on laser fluence during evaporation of a 3-μm water droplet: 1, before and 2, after destruction; 3 represents regular droplet evaporation.

Fig. 9
Fig. 9

Dependence of the light-to-acoustic energy transformation coefficient on laser fluence for water droplets: ■, a0 = 92; ○, 48; ●, 15 μm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

r t + ρ 0 div ( v ) = 0 , ρ 0 v t + p = 0 , ρ 0 u t = λ T Δ T - p 0 div ( v ) + Q ( r , t ) , p = R a ρ 0 T + R v ρ v T 0 + R a ρ a T 0 ,
T t = λ T C p ρ a Δ T + 1 C p ρ a p t + c s 2 R v C p ρ a R a γ 1 ρ v t + Q C p ρ a ; c s 2 Δ ( p + λ T T t ) - 2 p t 2 = - t [ ( γ 1 - 1 ) Q ( r , t ) - c s 2 γ 1 ρ v t ] .
T t = λ T C p ρ a Δ T + c s 2 R v C p ρ a R a γ 1 ρ v t + Q C p ρ a ,
c s 2 Δ p - 2 p t 2 = - t [ ( γ 1 - 1 ) Q ( r , t ) - c s 2 γ 1 ρ v t ] - t F ( r , t ) .
p ( r , t ) = 1 4 π r c s 2 V R F ( r , t - r / c s ) t d V ,
p ( r , t ) = 1 4 π r 1 γ 1 2 M v t 2 ;
2 M v t 2 = d d t S 0 j ( r , t ) d S , t < t des ,
2 M v t 2 = [ d d t S i j ( r , t ) d S ] , t > t des ,
2 M v t 2 = v T ( T * ) α 4 ( 1 - α / 2 ) d d t S 0 [ ρ v s ( r , T * ) - ρ v ( r = a , t ) ] d S ,
p 1 c s 2 γ 1 a 2 ( t ) β 1 ( a ) I 0 d g ( t ) d t ,             t < t des ,
p 2 c s 2 γ 1 a 2 ( t des ) β 2 ( a ) I 0 d g ( t ) d t , t > t des ,

Metrics