Abstract

The collinear and anticollinear interaction of guided light with magnetostatic forward volume waves in yttrium iron garnet epitaxial thin films was investigated experimentally. We set out to demonstrate double-beam modulation with the above interaction. This was not achieved, but the simultaneous occurrence of the above effects was used to expand the magnetostatic wave-optical interaction bandwidth.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
    [Crossref]
  2. C. S. Tsai, D. Young, “Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing,” IEEE Trans. Microwave Theory Tech. 38, 560–570 (1990).
    [Crossref]
  3. N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
    [Crossref]
  4. C. S. Tsai, D. Young, “Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet waveguide,” Appl. Phys. Lett. 54, 196–198 (1989).
    [Crossref]
  5. A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. Signal Process. 4, 265–284 (1985).
    [Crossref]
  6. A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.
  7. Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).
  8. A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).
  9. A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
    [Crossref]
  10. F. Tian, H. Herrmann, “Interchannel interference in multiwavelength observation of integrated acousto-optical filters and switches,” J. Lightwave Tech. 13, 1146–1154 (1995).
    [Crossref]
  11. N. Bilaniuk, D. D. Stancil, “Effective interaction lengths in the collinear magnetostatic wave-optical interaction,” in Integrated Optics and Optoelectronics, L. McLaughan, ed., Proc. SPIE1177, 365–372 (1990).
  12. S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
    [Crossref]
  13. J. F. Dillon, “Magnetic and optical properties of iron garnet thin films,” Magn. Magn. Mater. Dig. 84, 213–221 (1990).
    [Crossref]
  14. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1982).
  15. S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
    [Crossref]
  16. W. L. Bongianni, “Magnetostatic propagation in a dielectric layered structure,” J. Appl. Phys. 43, 2541–2548 (1972).
    [Crossref]
  17. N. D. J. Miller, “Magnetostatic volume wave propagation in a dielectric layered structure,” Phys. Status Solidi A 37, 83–91 (1976).
    [Crossref]
  18. S. H. Talisa, “The collinear interaction between forward volume magnetostatic waves and guided light in YIG films,” IEEE Trans. Magn. MAG-24, 2811–2813 (1988).
    [Crossref]
  19. H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
    [Crossref]
  20. B. Neite, H. Doetsch, “Dynamical conversion of optical modes in garnet films induced by ferromagnetic resonance,” J. Appl. Phys. 62, 648–652 (1987).
    [Crossref]

1995 (1)

F. Tian, H. Herrmann, “Interchannel interference in multiwavelength observation of integrated acousto-optical filters and switches,” J. Lightwave Tech. 13, 1146–1154 (1995).
[Crossref]

1990 (4)

J. F. Dillon, “Magnetic and optical properties of iron garnet thin films,” Magn. Magn. Mater. Dig. 84, 213–221 (1990).
[Crossref]

C. S. Tsai, D. Young, “Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing,” IEEE Trans. Microwave Theory Tech. 38, 560–570 (1990).
[Crossref]

N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
[Crossref]

A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).

1989 (1)

C. S. Tsai, D. Young, “Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet waveguide,” Appl. Phys. Lett. 54, 196–198 (1989).
[Crossref]

1988 (2)

S. H. Talisa, “The collinear interaction between forward volume magnetostatic waves and guided light in YIG films,” IEEE Trans. Magn. MAG-24, 2811–2813 (1988).
[Crossref]

H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
[Crossref]

1987 (1)

B. Neite, H. Doetsch, “Dynamical conversion of optical modes in garnet films induced by ferromagnetic resonance,” J. Appl. Phys. 62, 648–652 (1987).
[Crossref]

1986 (2)

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).

1985 (1)

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. Signal Process. 4, 265–284 (1985).
[Crossref]

1982 (1)

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

1976 (1)

N. D. J. Miller, “Magnetostatic volume wave propagation in a dielectric layered structure,” Phys. Status Solidi A 37, 83–91 (1976).
[Crossref]

1974 (1)

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

1973 (1)

A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[Crossref]

1972 (1)

W. L. Bongianni, “Magnetostatic propagation in a dielectric layered structure,” J. Appl. Phys. 43, 2541–2548 (1972).
[Crossref]

Adam, J. D.

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

Bespyatykh, Y. I.

Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).

Bilaniuk, N.

N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
[Crossref]

N. Bilaniuk, D. D. Stancil, “Effective interaction lengths in the collinear magnetostatic wave-optical interaction,” in Integrated Optics and Optoelectronics, L. McLaughan, ed., Proc. SPIE1177, 365–372 (1990).

Biolsi, W. A.

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

Blank, S. L.

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

Bongianni, W. L.

W. L. Bongianni, “Magnetostatic propagation in a dielectric layered structure,” J. Appl. Phys. 43, 2541–2548 (1972).
[Crossref]

Craig, A. E.

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

Daniel, M. R.

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

Dillon, J. F.

J. F. Dillon, “Magnetic and optical properties of iron garnet thin films,” Magn. Magn. Mater. Dig. 84, 213–221 (1990).
[Crossref]

Doetsch, H.

B. Neite, H. Doetsch, “Dynamical conversion of optical modes in garnet films induced by ferromagnetic resonance,” J. Appl. Phys. 62, 648–652 (1987).
[Crossref]

Emtage, P. R.

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

Fetisov, Y. K.

A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).

Fisher, A. D.

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. Signal Process. 4, 265–284 (1985).
[Crossref]

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

Gaynor, E. S.

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

Herrmann, H.

F. Tian, H. Herrmann, “Interchannel interference in multiwavelength observation of integrated acousto-optical filters and switches,” J. Lightwave Tech. 13, 1146–1154 (1995).
[Crossref]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1982).

Kaneko, M.

H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
[Crossref]

Klimov, A. A.

A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).

Lee, J. N.

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

Miller, N. D. J.

N. D. J. Miller, “Magnetostatic volume wave propagation in a dielectric layered structure,” Phys. Status Solidi A 37, 83–91 (1976).
[Crossref]

Neite, B.

B. Neite, H. Doetsch, “Dynamical conversion of optical modes in garnet films induced by ferromagnetic resonance,” J. Appl. Phys. 62, 648–652 (1987).
[Crossref]

Okamoto, T.

H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
[Crossref]

Parekh, J. P.

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

Preobrazhenskii, V. L.

A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).

Seman, J. A.

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

Stancil, D. D.

N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
[Crossref]

N. Bilaniuk, D. D. Stancil, “Effective interaction lengths in the collinear magnetostatic wave-optical interaction,” in Integrated Optics and Optoelectronics, L. McLaughan, ed., Proc. SPIE1177, 365–372 (1990).

Talisa, S. H.

N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
[Crossref]

S. H. Talisa, “The collinear interaction between forward volume magnetostatic waves and guided light in YIG films,” IEEE Trans. Magn. MAG-24, 2811–2813 (1988).
[Crossref]

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

Tamada, H.

H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
[Crossref]

Tarasenko, V. V.

Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).

Tian, F.

F. Tian, H. Herrmann, “Interchannel interference in multiwavelength observation of integrated acousto-optical filters and switches,” J. Lightwave Tech. 13, 1146–1154 (1995).
[Crossref]

Tsai, C. S.

C. S. Tsai, D. Young, “Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing,” IEEE Trans. Microwave Theory Tech. 38, 560–570 (1990).
[Crossref]

C. S. Tsai, D. Young, “Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet waveguide,” Appl. Phys. Lett. 54, 196–198 (1989).
[Crossref]

Tuan, H. S.

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

Tveten, A. B.

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

Wemple, S. H.

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

Wey, A. C. T.

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

Yariv, A.

A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[Crossref]

Young, D.

C. S. Tsai, D. Young, “Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing,” IEEE Trans. Microwave Theory Tech. 38, 560–570 (1990).
[Crossref]

C. S. Tsai, D. Young, “Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet waveguide,” Appl. Phys. Lett. 54, 196–198 (1989).
[Crossref]

Zubkov, V. I.

Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).

Appl. Phys. Lett. (2)

A. D. Fisher, J. N. Lee, E. S. Gaynor, A. B. Tveten, “Optical guided-wave interactions with magneto-static waves at microwave frequencies,” Appl. Phys. Lett. 41, 779–781 (1982).
[Crossref]

C. S. Tsai, D. Young, “Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet waveguide,” Appl. Phys. Lett. 54, 196–198 (1989).
[Crossref]

Circuits, Syst. Signal Process. (1)

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. Signal Process. 4, 265–284 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[Crossref]

IEEE Trans. Magn. (2)

S. H. Talisa, P. R. Emtage, M. R. Daniel, J. D. Adam, “Passband ripple observed in MSFVW delay lines,” IEEE Trans. Magn. MAG-22, 856–858 (1986).
[Crossref]

S. H. Talisa, “The collinear interaction between forward volume magnetostatic waves and guided light in YIG films,” IEEE Trans. Magn. MAG-24, 2811–2813 (1988).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

C. S. Tsai, D. Young, “Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing,” IEEE Trans. Microwave Theory Tech. 38, 560–570 (1990).
[Crossref]

J. Appl. Phys. (4)

N. Bilaniuk, D. D. Stancil, S. H. Talisa, “An optical frequency shifter using magnetostatic wave,” J. Appl. Phys. 67, 508–510 (1990).
[Crossref]

H. Tamada, M. Kaneko, T. Okamoto, “TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film,” J. Appl. Phys. 64, 554–559 (1988).
[Crossref]

B. Neite, H. Doetsch, “Dynamical conversion of optical modes in garnet films induced by ferromagnetic resonance,” J. Appl. Phys. 62, 648–652 (1987).
[Crossref]

W. L. Bongianni, “Magnetostatic propagation in a dielectric layered structure,” J. Appl. Phys. 43, 2541–2548 (1972).
[Crossref]

J. Lightwave Tech. (1)

F. Tian, H. Herrmann, “Interchannel interference in multiwavelength observation of integrated acousto-optical filters and switches,” J. Lightwave Tech. 13, 1146–1154 (1995).
[Crossref]

Magn. Magn. Mater. Dig. (1)

J. F. Dillon, “Magnetic and optical properties of iron garnet thin films,” Magn. Magn. Mater. Dig. 84, 213–221 (1990).
[Crossref]

Phys. Rev. B (1)

S. H. Wemple, S. L. Blank, J. A. Seman, W. A. Biolsi, “Optical properties of epitaxial iron garnet thin films,” Phys. Rev. B 9, 2134–2144 (1974).
[Crossref]

Phys. Status Solidi A (1)

N. D. J. Miller, “Magnetostatic volume wave propagation in a dielectric layered structure,” Phys. Status Solidi A 37, 83–91 (1976).
[Crossref]

Sov. Phys. Tech. Phys. (1)

Y. I. Bespyatykh, V. I. Zubkov, V. V. Tarasenko, “Propagation of surface magnetostatic waves in a ferrimagnetic plate,” Sov. Phys. Tech. Phys. 25, 82–85 (1986).

Sov. Tech. Phys. Lett. (1)

A. A. Klimov, V. L. Preobrazhenskii, Y. K. Fetisov, “Efficient light scattering by magnetostatic waves in a ferrite film,” Sov. Tech. Phys. Lett. 16, 649–650 (1990).

Other (3)

N. Bilaniuk, D. D. Stancil, “Effective interaction lengths in the collinear magnetostatic wave-optical interaction,” in Integrated Optics and Optoelectronics, L. McLaughan, ed., Proc. SPIE1177, 365–372 (1990).

A. C. T. Wey, H. S. Tuan, J. P. Parekh, A. E. Craig, J. N. Lee, “Enhanced-bandwidth MSFVW-optical interaction employing an inhomogeneous bias field,” in Ultrasonics Symp. (IEEE, New York, 1985), pp. 173–178.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Room-temperature insertion loss (linear) against the frequency of 11.7-μm YIG film. Magnetic bias field (Happ = 2.8 kOe) applied normal to the film.

Fig. 2
Fig. 2

Pulse response of MSFVW-varying frequency with constant magnetic bias field (H = 3.1 kOe) and film thickness of 11.7 μm. The frequency varied from 4.05 to 4.15 GHz.

Fig. 3
Fig. 3

Microwave setup used to generate standing-wave MSFVW: SW, pin diode; PS, power splitter; Amp, solid-state amplifier. The two interfering MSFVW’s counterpropagate perpendicular to the magnetic bias field.

Fig. 4
Fig. 4

At a fixed bias field and rf, the relative intensities of the static and dynamic mode conversion can be directly observed. Level 3, dynamic and static conversion; level 2, static conversion; level 1, laser blocked.

Fig. 5
Fig. 5

MSW optical interaction bandwidth of 13 MHz with peak mode conversion frequency equal to 2.4 GHz. Negative signal reflects phase difference between reference and observed signal at the lock-in amplifier.

Fig. 6
Fig. 6

Relationship between the maximum mode conversion to the rf power reaching the sending antenna. MSFVW frequency is 2.62 GHz.

Fig. 7
Fig. 7

Mode conversion intensity versus frequency (2.40–2.53 GHz). Geometry is as follows: (a) collinear, (b) anticollinear, (c) a combination of the two. The interaction bandwidth in (c) is approximately 130 MHz. Negative signal reflects phase difference between reference and observed signals at the lock-in amplifier.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A d z = B [ κ exp ( - i Δ k z ) + M κ * exp ( - i Δ k z ) ] ,
d B d z = - A [ κ * exp ( + i Δ k z ) + M κ exp ( + i Δ k z ) ] ,
B ( z ) = 2 κ exp ( - i Δ k / 2 ) sin { [ 4 κ 2 + ( Δ k ) 2 z / 2 ] 1 / 2 } / [ 4 κ 2 + ( Δ k ) 2 ] 1 / 2 .
Δ f = c s ω M d 2 L ,
n 2 - n 3 > ( 2 m + 1 ) 2 λ 0 2 16 ( n 2 + n 3 ) t 2 .
η = diffracted light intensity undiffracted light + diffracted light intensity × 100 % .

Metrics