Abstract

We describe a simple, optical technique for mapping 180° domains hidden inside photorefractive crystals. We intersect two coherent light beams in the crystal. Photorefractive coupling between the two beams causes one beam to emerge with a map of all the crystal’s 180° domains imprinted upon it. We tested many BaTiO3 crystals and found that they all contained 180° domains, with the relative volume of these domains varying from 25% to 0.1%.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972); “Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973).
    [CrossRef]
  2. M. Horowitz, A. Bekker, B. Fischer, “Image and hologram fixing method with SrxBa1−xNb2O6 crystals,” Opt. Lett. 18, 1964–1966 (1993).
    [CrossRef] [PubMed]
  3. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  4. G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.
  5. F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
    [CrossRef]
  6. V. Grubsky, S. MacCormack, J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
    [CrossRef] [PubMed]
  7. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
    [CrossRef]

1996 (1)

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (1)

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972); “Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bekker, A.

Bismuth, G.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972); “Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973).
[CrossRef]

Cronin-Golomb, M.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Feinberg, J.

V. Grubsky, S. MacCormack, J. Feinberg, “All-optical three-dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

Fischer, B.

Fogarty, G.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Grubsky, V.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Horowitz, M.

Kahmann, F.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

Laor, U.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

MacCormack, S.

Martin, J.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Matull, R.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

Micheron, F.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972); “Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973).
[CrossRef]

Rupp, R. A.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

Seglins, J.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

Steiner, B.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

Uhrin, R.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Appl. Phys. Lett. (1)

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972); “Field and time thresholds for the electrical fixation of holograms recorded in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973).
[CrossRef]

Europhys. Lett. (1)

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins: “Polarization topography in photorefractive ferroelectrics,” Europhys. Lett. 13, 405–410 (1990); “A new method for the study of antiparallel ferroelectric domains,” Phase Transitions 40, 171–185 (1992).
[CrossRef]

J. Appl. Phys. (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum J. Appl. Phys. 52, 537 (1981).
[CrossRef]

Opt. Lett. (2)

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (1)

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical setup to observe 180° domains hidden inside a BaTiO3 crystal. A probe beam travels exactly along the crystal’s c axis and steals energy from a pump beam by photorefractive two-beam coupling, except in crystal regions containing 180° domains. Any 180° domains hidden in the crystal appear as dark spots on the screen.

Fig. 2
Fig. 2

Profile of the transmitted probe beam after it travels along the crystal’s +c-axis direction: (a) with no pump beam present, (b) with the pump beam present, and (c) with the probe beam traveling against the c-axis direction. In (b) the domains appear as dark holes. In (c) the crystal has been rotated by 180° so the same domains now appear as bright spots. [Note: image (c) has been flipped left/right for ease of comparison with image (b).]

Metrics