Abstract

The emission of a broad-area laser always contains several lateral modes (along the junction plane) even at low drive levels. To increase the discrimination against high-order lateral modes, we developed simple techniques for depositing a profiled thin layer of SiO on the output facet of a broad-area laser that has a 75-μm-wide injection current stripe. The profiled coating provided a nearly Gaussian reflectivity in the lateral direction (parallel to the junction plane). The resolved near-field spectra of the uncoated and coated lasers have been compared. The maximum output power in the single-lateral-mode regime was pushed to 25 mW with the profiled coating, compared with a corresponding power of less than 1 mW before deposition. Experimental results have confirmed the behavior predicted by our numerical simulations. This method is scalable to higher-power lasers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zucker, “Optical resonators with variable reflectivity mirrors,” Bell Syst. Tech. J. 49, 2349–2376 (1970).
  2. F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
    [CrossRef]
  3. N. McCarthy, P. Lavigne, “Large-size Gaussian mode in unstable resonators using Gaussian mirrors,” Opt. Lett. 10, 553–555 (1985).
    [CrossRef] [PubMed]
  4. K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
    [CrossRef]
  5. N. McCarthy, Y. Champagne, “Lateral-mode discrimination in broad-area semiconductor lasers with a smooth spatially filtering output facet,” J. Appl. Phys. 67, 3192–3194 (1990).
    [CrossRef]
  6. K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
    [CrossRef]
  7. G. P. Agrawal, “Fast-Fourier transform based beam-propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
    [CrossRef]
  8. Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
    [CrossRef]
  9. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970).
    [CrossRef] [PubMed]
  10. G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
    [CrossRef]
  11. J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
    [CrossRef]
  12. P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
    [CrossRef]
  13. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
    [CrossRef] [PubMed]
  14. G. Giuliani, Y. K. Park, R. L. Byer, “Radial birefringent element and its application to laser resonator design,” Opt. Lett. 5, 491–493 (1980).
    [CrossRef] [PubMed]
  15. P. Lavigne, N. McCarthy, J.-G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24, 2581–2586 (1985); Erratum, Appl. Opt. 24, 4278 (1985).
    [CrossRef] [PubMed]
  16. E. Armandillo, G. Giuliani, “Large-size TEM00 mode XeCl laser achieved with a novel apoditic filter,” in Technical Digest of Conference on Lasers and Electo-Optics (Optical Society of America, Washington, D.C., 1985), p. 116.
  17. S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
    [CrossRef]

1995 (1)

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

1994 (1)

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

1991 (1)

1990 (2)

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

N. McCarthy, Y. Champagne, “Lateral-mode discrimination in broad-area semiconductor lasers with a smooth spatially filtering output facet,” J. Appl. Phys. 67, 3192–3194 (1990).
[CrossRef]

1988 (2)

J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[CrossRef]

K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
[CrossRef]

1987 (1)

G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
[CrossRef]

1985 (2)

1984 (2)

G. P. Agrawal, “Fast-Fourier transform based beam-propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
[CrossRef]

1980 (1)

1979 (1)

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

1970 (2)

H. Zucker, “Optical resonators with variable reflectivity mirrors,” Bell Syst. Tech. J. 49, 2349–2376 (1970).

A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, “Fast-Fourier transform based beam-propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

Armandillo, E.

E. Armandillo, G. Giuliani, “Large-size TEM00 mode XeCl laser achieved with a novel apoditic filter,” in Technical Digest of Conference on Lasers and Electo-Optics (Optical Society of America, Washington, D.C., 1985), p. 116.

Bélanger, P. A.

Byer, R. L.

Champagne, Y.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

N. McCarthy, Y. Champagne, “Lateral-mode discrimination in broad-area semiconductor lasers with a smooth spatially filtering output facet,” J. Appl. Phys. 67, 3192–3194 (1990).
[CrossRef]

Connell, G. A. N.

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

De Silvestri, S.

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

Demers, J.-G.

Giuliani, G.

G. Giuliani, Y. K. Park, R. L. Byer, “Radial birefringent element and its application to laser resonator design,” Opt. Lett. 5, 491–493 (1980).
[CrossRef] [PubMed]

E. Armandillo, G. Giuliani, “Large-size TEM00 mode XeCl laser achieved with a novel apoditic filter,” in Technical Digest of Conference on Lasers and Electo-Optics (Optical Society of America, Washington, D.C., 1985), p. 116.

Hadley, G. R.

J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[CrossRef]

G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
[CrossRef]

Hohimer, J. P.

J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[CrossRef]

G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
[CrossRef]

Ikeda, K.

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

Kakimoto, S.

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

Lavigne, P.

Magni, V.

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

Mailhot, S.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

McCarthy, N.

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

N. McCarthy, Y. Champagne, “Lateral-mode discrimination in broad-area semiconductor lasers with a smooth spatially filtering output facet,” J. Appl. Phys. 67, 3192–3194 (1990).
[CrossRef]

K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
[CrossRef]

P. Lavigne, N. McCarthy, J.-G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24, 2581–2586 (1985); Erratum, Appl. Opt. 24, 4278 (1985).
[CrossRef] [PubMed]

N. McCarthy, P. Lavigne, “Large-size Gaussian mode in unstable resonators using Gaussian mirrors,” Opt. Lett. 10, 553–555 (1985).
[CrossRef] [PubMed]

Meissner, P.

P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
[CrossRef]

Miller, H. Y.

Nagai, Y.

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

Owyoung, A.

J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[CrossRef]

G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
[CrossRef]

Park, Y. K.

Patzak, E.

P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
[CrossRef]

Piché, M.

K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
[CrossRef]

Ponce, F. A.

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

Scifres, D. R.

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

Shigihara, K.

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

Siegman, A. E.

Snell, K. J.

K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
[CrossRef]

Streifer, W.

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

Svelto, O.

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

Valentini, G.

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

Yevick, D.

P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
[CrossRef]

Zucker, H.

H. Zucker, “Optical resonators with variable reflectivity mirrors,” Bell Syst. Tech. J. 49, 2349–2376 (1970).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. P. Hohimer, G. R. Hadley, A. Owyoung, “Mode control in broad-area diode lasers by thermally induced lateral index tailoring,” Appl. Phys. Lett. 52, 260–262 (1988).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Zucker, “Optical resonators with variable reflectivity mirrors,” Bell Syst. Tech. J. 49, 2349–2376 (1970).

IEEE J. Quantum Electron. (6)

F. A. Ponce, D. R. Scifres, W. Streifer, G. A. N. Connell, “Lateral mode stabilization of diode lasers by means of apertured facet reflectors,” IEEE J. Quantum Electron. QE-15, 1205–1207 (1979).
[CrossRef]

G. R. Hadley, J. P. Hohimer, A. Owyoung, “Free-running modes for gain-guided diode laser arrays,” IEEE J. Quantum Electron. QE-23, 765–774 (1987).
[CrossRef]

K. Shigihara, Y. Nagai, S. Kakimoto, K. Ikeda, “Achieving broad-area laser diodes with high output power and single-lobed far-field patterns in the lateral direction by loading a modal reflector,” IEEE J. Quantum Electron. 30, 1683–1690 (1994).
[CrossRef]

P. Meissner, E. Patzak, D. Yevick, “A self-consistent model of stripe geometry lasers based on the beam propagation method,” IEEE J. Quantum Electron. QE-20, 899–905 (1984).
[CrossRef]

Y. Champagne, S. Mailhot, N. McCarthy, “Numerical procedure for the lateral-mode analysis of broad-area semiconductor lasers with an external cavity,” IEEE J. Quantum Electron. 31, 795–810 (1995).
[CrossRef]

S. De Silvestri, V. Magni, O. Svelto, G. Valentini, “Lasers with super-Gaussian mirrors,” IEEE J. Quantum Electron. 26, 1500–1509 (1990).
[CrossRef]

J. Appl. Phys. (2)

G. P. Agrawal, “Fast-Fourier transform based beam-propagation model for stripe-geometry semiconductor lasers: inclusion of axial effects,” J. Appl. Phys. 56, 3100–3109 (1984).
[CrossRef]

N. McCarthy, Y. Champagne, “Lateral-mode discrimination in broad-area semiconductor lasers with a smooth spatially filtering output facet,” J. Appl. Phys. 67, 3192–3194 (1990).
[CrossRef]

Opt. Commun. (1)

K. J. Snell, N. McCarthy, M. Piché, P. Lavigne, “Single-transverse mode oscillation from an unstable resonator Nd: YAG laser using a variable reflectivity mirror,” Opt. Commun. 65, 377–382 (1988).
[CrossRef]

Opt. Lett. (3)

Other (1)

E. Armandillo, G. Giuliani, “Large-size TEM00 mode XeCl laser achieved with a novel apoditic filter,” in Technical Digest of Conference on Lasers and Electo-Optics (Optical Society of America, Washington, D.C., 1985), p. 116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Numerical results for the broad-area laser with a profiled reflectivity facet: (a) discrimination, (b) beam quality factor, (c) threshold current all plotted as a function of the half-width of the reflectivity profile. The solid curves hold for a central facet reflectivity of 30% and the dashed curves are for 60%. The horizontal line in each figure represents the level of the calculated value for a laser without any profiled layer with a reflectivity of 30%.

Fig. 2
Fig. 2

Simplified schemes of the techniques used to obtain narrow one-dimensional profiled layers with a) a thin wire or b) a narrow slit used as a mask during the evaporation of the dielectric material.

Fig. 3
Fig. 3

a) Variations of the thickness of the profiled SiO layer, and b) the corresponding calculated reflectivity profile for the layer deposited on a substrate of GaAs.

Fig. 4
Fig. 4

Microphotograph of the output facet coated with the profiled SiO layer.

Fig. 5
Fig. 5

Experimental setup used for the measurement of resolved near-field spectra. BA, broad area; HR, high-reflectivity coating.

Fig. 6
Fig. 6

Resolved near-field spectrum of the uncoated broad-area laser (25 mW).

Fig. 7
Fig. 7

Resolved near-field spectrum of the coated broad-area laser (25 mW).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( x ) = R 0 exp ( - x 2 w m 2 ) ,
R ( x ) = | r 12 + r 23 exp [ - i Δ 2 ( x ) ] 1 + r 12 r 23 exp [ - i Δ 2 ( x ) ] | 2 ,
Δ 2 ( x ) = 4 π n 2 e ( x ) / λ 0 ,
r i j = ( n i - n j ) / ( n i + n j ) ,

Metrics