Abstract

Single optically levitated microparticles were investigated by Raman spectroscopy. The particles were composed of di-octyl-phthalate (DOP) and glycerol; these substances are not mixable and form a two-phase droplet. Measurements of the Raman spectrum confirm the formation of droplets containing both chemical species. The spectra show strong input and output structural resonances as expected. If the particle is in resonance, the field inside the particle is enhanced, and most of the inelastically scattered light is emitted from molecules close to the droplet rim. If the particle does not fulfill the resonance condition, the contribution of an individual molecule to the Raman scattering does not depend strongly on the radial position of this molecule. On this basis, the radial distribution of the two components inside the evaporating droplet was determined by time-dependent measurements of the Raman spectrum. Furthermore, elastic-light scattering and the evaporation characteristics of the particles were investigated.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  2. R. Thurn, W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
    [CrossRef]
  3. R. Thurn, W. Kiefer, “Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres,” J. Raman Spectrosc. 15, 411–413 (1984).
    [CrossRef]
  4. R. Thurn, W. Kiefer, “Structural resonances observed in the spontaneous Raman spectrum of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [CrossRef] [PubMed]
  5. T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
    [CrossRef]
  6. R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
    [CrossRef]
  7. J. C. Carls, G. Moncivais, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated micro-droplets,” Appl. Opt. 29, 2913–2918 (1990).
    [CrossRef] [PubMed]
  8. J. C. Carls, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated microdroplets,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 120–131 (1991).
  9. C. Esen, T. Kaiser, G. Schweiger, “Experimental study of polymerization reactions on optically levitated microparticles by Raman spectroscopy,” J. Aerosol Sci. 26, S285–S286 (1995).
    [CrossRef]
  10. W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
    [CrossRef]
  11. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 1, pp. 1–63.
  12. G. Schweiger, “Observation of input and output structural resonances in the Raman spectrum of a single spheroidal dielectric microparticle,” Opt. Lett. 15, 156–158 (1990).
    [CrossRef] [PubMed]
  13. G. Schweiger, “Observation of morphology dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
    [CrossRef]
  14. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
    [CrossRef]
  15. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
    [CrossRef]
  16. T. Kaiser, G. Roll, G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
    [CrossRef]
  17. H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
    [CrossRef] [PubMed]
  18. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987).
    [CrossRef]
  19. S. C. Ching, H. M. Lai, K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).
    [CrossRef]
  20. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [CrossRef] [PubMed]
  21. H.-B. Lin, A. J. Campillo, “Radial profiling of microdroplets using cavity-enhanced Raman spectroscopy,” Opt. Lett. 20, 1589–1591 (1995).
    [CrossRef] [PubMed]
  22. S. Lange, G. Schweiger, “Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence,” J. Opt. Soc. Am. B 13, 1864–1872 (1996).
    [CrossRef]
  23. R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
    [CrossRef] [PubMed]
  24. A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
    [CrossRef]
  25. J. L. Huckaby, A. K. Ray, “Layer formation on microdroplets: a study based on resonant light scattering,” Langmuir 11, 80–86 (1995).
    [CrossRef]
  26. A. K. Ray, R. Nandakumar, “Simultaneous determination of size and wavelength-dependent refractive indices of thin-layered droplets from optical resonances,” Appl. Opt. 34, 7759–7770 (1995).
    [CrossRef] [PubMed]
  27. R. L. Hightower, C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988).
    [CrossRef] [PubMed]
  28. J. A. Lock, “Interference enhancement of the internal fields at structural resonances of a coated sphere,” Appl. Opt. 29, 3180–3187 (1990).
    [CrossRef] [PubMed]
  29. T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a coated sphere: investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
    [CrossRef] [PubMed]
  30. A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  31. G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
    [CrossRef]
  32. T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
    [CrossRef]
  33. G. Schweiger, “Radiation pressure effect on light scattering from optically levitated microparticles,” J. Opt. Soc. Am. B 8, 174–176 (1991).
    [CrossRef]
  34. T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).
  35. A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
    [CrossRef]
  36. A. K. Ray, A. Souyri, E. J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
    [CrossRef] [PubMed]
  37. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, San Diego, 1969), p. 492.
  38. R. C. Reid, J. M. Prausnitz, B. E. Poling, Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1986), pp. 55–66, 89–93.
  39. N. A. Fuchs, Evaporation and Droplet Growth in Gaseous Media (Pergamon, Oxford, 1959).
  40. V. Bharat, A. K. Ray, “Evaporation and growth dynamics of a layered droplet,” Int. J. Heat Mass Transfer 35, 2389–2401 (1992).
    [CrossRef]

1996 (3)

S. Lange, G. Schweiger, “Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence,” J. Opt. Soc. Am. B 13, 1864–1872 (1996).
[CrossRef]

G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

1995 (5)

1994 (2)

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a coated sphere: investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
[CrossRef] [PubMed]

1992 (3)

T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).

V. Bharat, A. K. Ray, “Evaporation and growth dynamics of a layered droplet,” Int. J. Heat Mass Transfer 35, 2389–2401 (1992).
[CrossRef]

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

1991 (4)

1990 (5)

1989 (1)

A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
[CrossRef]

1988 (3)

1987 (2)

1985 (3)

R. Thurn, W. Kiefer, “Structural resonances observed in the spontaneous Raman spectrum of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
[CrossRef] [PubMed]

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[CrossRef]

R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
[CrossRef]

1984 (2)

R. Thurn, W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
[CrossRef]

R. Thurn, W. Kiefer, “Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres,” J. Raman Spectrosc. 15, 411–413 (1984).
[CrossRef]

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1951 (1)

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Allen, T. M.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 1, pp. 1–63.

Bharat, V.

V. Bharat, A. K. Ray, “Evaporation and growth dynamics of a layered droplet,” Int. J. Heat Mass Transfer 35, 2389–2401 (1992).
[CrossRef]

Borchers, M.

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

Brock, J. R.

J. C. Carls, G. Moncivais, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated micro-droplets,” Appl. Opt. 29, 2913–2918 (1990).
[CrossRef] [PubMed]

J. C. Carls, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated microdroplets,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 120–131 (1991).

Campillo, A. J.

Carls, J. C.

J. C. Carls, G. Moncivais, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated micro-droplets,” Appl. Opt. 29, 2913–2918 (1990).
[CrossRef] [PubMed]

J. C. Carls, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated microdroplets,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 120–131 (1991).

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Ching, S. C.

Davis, E. J.

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

A. K. Ray, A. Souyri, E. J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
[CrossRef] [PubMed]

Devakottai, B.

A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Esen, C.

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

C. Esen, T. Kaiser, G. Schweiger, “Experimental study of polymerization reactions on optically levitated microparticles by Raman spectroscopy,” J. Aerosol Sci. 26, S285–S286 (1995).
[CrossRef]

Eversole, J. D.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
[CrossRef] [PubMed]

Foss, W. R.

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

Fuchs, N. A.

N. A. Fuchs, Evaporation and Droplet Growth in Gaseous Media (Pergamon, Oxford, 1959).

Hightower, R. L.

Hill, S. C.

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 1, pp. 1–63.

Huckaby, J. L.

J. L. Huckaby, A. K. Ray, “Layer formation on microdroplets: a study based on resonant light scattering,” Langmuir 11, 80–86 (1995).
[CrossRef]

A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[CrossRef]

Johnson, R. D.

A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
[CrossRef]

Kaiser, T.

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

C. Esen, T. Kaiser, G. Schweiger, “Experimental study of polymerization reactions on optically levitated microparticles by Raman spectroscopy,” J. Aerosol Sci. 26, S285–S286 (1995).
[CrossRef]

T. Kaiser, G. Roll, G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
[CrossRef]

T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a coated sphere: investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
[CrossRef] [PubMed]

T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).

Kerker, M.

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, San Diego, 1969), p. 492.

Kiefer, W.

Lai, H. M.

Lange, S.

Lettieri, T. R.

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[CrossRef]

R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
[CrossRef]

Li, W.

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

Lin, H.-B.

Lock, J. A.

Merritt, C. D.

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Moncivais, G.

Moritz, H.

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

Nandakumar, R.

Poling, B. E.

R. C. Reid, J. M. Prausnitz, B. E. Poling, Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1986), pp. 55–66, 89–93.

Prausnitz, J. M.

R. C. Reid, J. M. Prausnitz, B. E. Poling, Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1986), pp. 55–66, 89–93.

Preston, R. E.

R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
[CrossRef]

Preston, R. L.

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[CrossRef]

Rassat, S. D.

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

Ray, A. K.

J. L. Huckaby, A. K. Ray, “Layer formation on microdroplets: a study based on resonant light scattering,” Langmuir 11, 80–86 (1995).
[CrossRef]

A. K. Ray, R. Nandakumar, “Simultaneous determination of size and wavelength-dependent refractive indices of thin-layered droplets from optical resonances,” Appl. Opt. 34, 7759–7770 (1995).
[CrossRef] [PubMed]

V. Bharat, A. K. Ray, “Evaporation and growth dynamics of a layered droplet,” Int. J. Heat Mass Transfer 35, 2389–2401 (1992).
[CrossRef]

A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[CrossRef]

A. K. Ray, A. Souyri, E. J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
[CrossRef] [PubMed]

A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
[CrossRef]

Reid, R. C.

R. C. Reid, J. M. Prausnitz, B. E. Poling, Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1986), pp. 55–66, 89–93.

Richardson, C. B.

Roll, G.

G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

T. Kaiser, G. Roll, G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
[CrossRef]

Schweiger, G.

S. Lange, G. Schweiger, “Structural resonances in the total Raman- and fluorescence-scattering cross section: concentration-profile dependence,” J. Opt. Soc. Am. B 13, 1864–1872 (1996).
[CrossRef]

G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

C. Esen, T. Kaiser, G. Schweiger, “Experimental study of polymerization reactions on optically levitated microparticles by Raman spectroscopy,” J. Aerosol Sci. 26, S285–S286 (1995).
[CrossRef]

T. Kaiser, G. Roll, G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
[CrossRef]

T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a coated sphere: investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
[CrossRef] [PubMed]

T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).

G. Schweiger, “Radiation pressure effect on light scattering from optically levitated microparticles,” J. Opt. Soc. Am. B 8, 174–176 (1991).
[CrossRef]

G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
[CrossRef]

G. Schweiger, “Observation of input and output structural resonances in the Raman spectrum of a single spheroidal dielectric microparticle,” Opt. Lett. 15, 156–158 (1990).
[CrossRef] [PubMed]

G. Schweiger, “Observation of morphology dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
[CrossRef]

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
[CrossRef]

Semerjian, H. G.

R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
[CrossRef]

Souyri, A.

A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[CrossRef]

A. K. Ray, A. Souyri, E. J. Davis, T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
[CrossRef] [PubMed]

A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
[CrossRef]

Thurn, R.

Voßmerbäumer, C.

T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).

Young, K.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (2)

T. Kaiser, C. Esen, H. Moritz, M. Borchers, G. Schweiger, “Observation of fluorescence background suppression in Raman scattering on optically levitated microparticles,” Ber. Bunsenges. Phys. Chem. 100, 113–122 (1996).
[CrossRef]

T. Kaiser, C. Voßmerbäumer, G. Schweiger, “A new approach to the determination of fluid phase equilibria: concentration measurements by Raman spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 976–980 (1992).

Int. J. Heat Mass Transfer (1)

V. Bharat, A. K. Ray, “Evaporation and growth dynamics of a layered droplet,” Int. J. Heat Mass Transfer 35, 2389–2401 (1992).
[CrossRef]

J. Aerosol Sci. (3)

G. Roll, T. Kaiser, G. Schweiger, “Optical trap sedimentation cell: a new method for the sizing of optically levitated microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
[CrossRef]

C. Esen, T. Kaiser, G. Schweiger, “Experimental study of polymerization reactions on optically levitated microparticles by Raman spectroscopy,” J. Aerosol Sci. 26, S285–S286 (1995).
[CrossRef]

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
[CrossRef]

J. Appl. Phys. (1)

A. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Colloid Interface Sci. (1)

W. Li, S. D. Rassat, W. R. Foss, E. J. Davis, “Formation and properties of aerocolloidal TiO2-coated microspheres produced by alkoxide droplet reaction,” J. Colloid Interface Sci. 162, 267–278 (1994).
[CrossRef]

J. Opt. Soc. Am. B (6)

J. Raman Spectrosc. (2)

G. Schweiger, “Observation of morphology dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
[CrossRef]

R. Thurn, W. Kiefer, “Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres,” J. Raman Spectrosc. 15, 411–413 (1984).
[CrossRef]

Langmuir (4)

R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir 1, 365–367 (1985).
[CrossRef]

A. K. Ray, B. Devakottai, A. Souyri, J. L. Huckaby, “Evaporation characteristics of droplets coated with immiscible layers of nonvolatile liquids,” Langmuir 7, 525–531 (1991).
[CrossRef]

J. L. Huckaby, A. K. Ray, “Layer formation on microdroplets: a study based on resonant light scattering,” Langmuir 11, 80–86 (1995).
[CrossRef]

A. K. Ray, R. D. Johnson, A. Souyri, “Dynamic behavior of single glycerol droplets in humid air streams,” Langmuir 5, 133–140 (1989).
[CrossRef]

Opt. Commun. (1)

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, C. D. Merritt, A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
[CrossRef] [PubMed]

Other (5)

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 1, pp. 1–63.

J. C. Carls, J. R. Brock, “Time-resolved Raman spectroscopy from reacting optically levitated microdroplets,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 120–131 (1991).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, San Diego, 1969), p. 492.

R. C. Reid, J. M. Prausnitz, B. E. Poling, Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1986), pp. 55–66, 89–93.

N. A. Fuchs, Evaporation and Droplet Growth in Gaseous Media (Pergamon, Oxford, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Raman spectra of a coated droplet consisting of DOP and glycerol (upper figure). The lower figure shows Raman spectra of DOP and glycerol measured in a cuvette.

Fig. 2
Fig. 2

Time-dependent measurement on a DOP–glycerol droplet at a temperature of T = 35 °C. Elastic-light-scattering intensity (upper figure) and Raman spectrum in a grey scale image (lower figure). The intermediate figure shows the Raman spectrum integrated over the Raman shift.

Fig. 3
Fig. 3

Raman spectrum of the coated droplet if the particle is in a resonant and a nonresonant case in comparison with the bulk spectrum of the pure substances (lower figure).

Fig. 4
Fig. 4

Elastic-light-scattering intensity on an evaporating DOP–glycerol droplet at a temperature of T = 30 °C. The volume ratio was 1:1 at time t = 0 s.

Fig. 5
Fig. 5

Determination of the refractive index of a glycerol water droplet. Computations were performed for a refractive index of (a) m = 1.451, (b) m = 1.453, (c) m = 1.455, (d) m = 1.457, and (e) m = 1.459.

Fig. 6
Fig. 6

Elastic-light-scattering intensity on an evaporating DOP–glycerol droplet (small core region). The filled circle in the open circle denotes the ratio of core and total sphere radii.

Fig. 7
Fig. 7

Elastic-light-scattering intensity on an evaporating DOP–glycerol droplet (intermediate region).

Fig. 8
Fig. 8

Elastic-light-scattering intensity on an evaporating DOP–glycerol droplet (large core region).

Fig. 9
Fig. 9

Evaporation characteristics of a coated DOP–glycerol droplet in comparison with a pure glycerol droplet.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ = ρ d 2 18 η .
I Raman ( Δ ν ˜ ) = i DOP I DOP ( Δ ν ˜ ) + i glycerol I glycerol ( Δ ν ˜ ) ,

Metrics