Abstract

Accurate measurements of collision-induced absorption by pure nitrogen in the fundamental band near 4.3 μm have been made in the 0–10 atm and 230–300 K pressure and temperature ranges, respectively. A Fourier-transform spectrometer was used with a resolution of 0.5 cm−1. The current measurements, which agree well with previous ones but are more precise, reveal that weak features are superimposed on the broad N2 continuum. These features have negligible temperature dependence, and their origin is not clear at the present time. Available experimental data in the 190–300 K temperature range have been used to build a simple empirical model that is suitable for use to compute atmospheric N2 absorption. Tests indicate that this model is accurate unlike the estimates produced by widely used atmospheric transmission codes.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Roney, F. Reid, J. M. Theriault, “Transmission window near 2400 cm−1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991).
    [CrossRef] [PubMed]
  2. J. M. Theriault, P. L. Roney, F. Reid, “Atmospheric transmission in the 2.8–5.5-μm region: description of the Fourier interferometric transmissometer and typical result at low temperature,” Appl. Opt. 29, 3654–3666 (1990).
    [CrossRef] [PubMed]
  3. R. Courtin, “Pressure induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere,” Icarus 75, 245–254 (1988).
    [CrossRef]
  4. D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
    [CrossRef]
  5. M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
    [CrossRef]
  6. H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
    [CrossRef]
  7. S. P. Reddy, C. W. Cho, “Induced infrared absorption of nitrogen and nitrogen-foreign-gas mixtures,” Can. J. Phys. 43, 2331–2342 (1965).
    [CrossRef]
  8. M. M. Shapiro, H. P. Gush, “The collision-bands of oxygen and nitrogen,” Can. J. Phys. 44, 949–963 (1966).
    [CrossRef]
  9. D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide,” Report AFCRL-71-0124 (Air Force Cambridge Research Laboratories, Bedford, Mass.1971).
  10. D. T. Sheng, G. E. Ewing, “Collision-induced infrared absorption of gaseous nitrogen at low temperature,” J. Chem. Phys. 55, 5425–5430 (1971).
    [CrossRef]
  11. V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the earth’s atmosphere by the [N2–N2] and [N2–O2] complexes,” Atmos. Ocean Phys. 9, 411–414 (1973).
  12. C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
    [CrossRef]
  13. N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).
  14. C. P. Rinsland, M. A. H. Smith, J. M. Russel, J. H. Park, C. B. Framer, “Stratospheric measurements of continuous absorption near 2400 cm−1,” Appl. Opt. 20, 4167–4171 (1981).
    [CrossRef] [PubMed]
  15. A. R. W. McKellar, “Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules,” J. Chem. Phys. 88, 4190–4196 (1988).
    [CrossRef]
  16. M. E. Thomas, M. J. Linevsky, “Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature,” J. Quant. Spectrosc. Radiat. Transfer 42, 465–476 (1989).
    [CrossRef]
  17. U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
    [CrossRef]
  18. C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
    [CrossRef]
  19. V. Menoux, R. Le Doucen, C. Boulet, A. Roblin, A. M. Bouchardy, “Collision-induced absorption in the fundamental band of N2: temperature dependence of the absorption by N2–N2 and N2–O2 pairs,” Appl. Opt. 32, 263–268 (1993).
    [CrossRef] [PubMed]
  20. G. Birnbaum, E. R. Cohen, “Theory of line shape in pressure-induced absorption,” Can. J. Phys. 54, 593–602 (1976).
    [CrossRef]
  21. M. Moon, D. W. Oxtoby, “Collision-induced absorption in gaseous N2,” J. Chem. Phys. 84, 3830–3842 (1986).
    [CrossRef]
  22. C. G. Joslin, “Collision-induced absorption in the fundamental band of nitrogen gas,” Can. J. Phys. 65, 1629–1635 (1987).
    [CrossRef]
  23. J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
    [CrossRef]
  24. L. Frommhold, Collision-Induced Absorption in Gases (Cambridge U. Press, Cambridge, U.K., 1993), pp. 279–355.
  25. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).
  26. S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.
  27. J. M. Theriault, P. L. Roney, D. St. Germain, H. E. Revercomb, R. O. Knuteson, W. L. Smith, “Analysis of the FASCODE model and its H2O continuum based on long-path atmospheric transmission measurements in the 4.5–11.5-μm region,” Appl. Opt. 33, 323–333 (1994).
    [CrossRef] [PubMed]
  28. D. C. Tobin, L. L. Strow, W. J. Lafferty, W. B. Olson, “Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor,” Appl. Opt. 35, 4724–4734 (1996).
    [CrossRef] [PubMed]
  29. R. C. Weast, ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1981–1982), p. D-166.
  30. C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
    [CrossRef]
  31. J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
    [CrossRef]
  32. A. Vigasin, Institute of Atmospheric Physics, Pyzhevsky per. 3, Moscow 109017, Russia (personal communication, 1995).

1996

1994

J. M. Theriault, P. L. Roney, D. St. Germain, H. E. Revercomb, R. O. Knuteson, W. L. Smith, “Analysis of the FASCODE model and its H2O continuum based on long-path atmospheric transmission measurements in the 4.5–11.5-μm region,” Appl. Opt. 33, 323–333 (1994).
[CrossRef] [PubMed]

J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
[CrossRef]

1993

1991

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

P. L. Roney, F. Reid, J. M. Theriault, “Transmission window near 2400 cm−1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991).
[CrossRef] [PubMed]

1990

1989

M. E. Thomas, M. J. Linevsky, “Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature,” J. Quant. Spectrosc. Radiat. Transfer 42, 465–476 (1989).
[CrossRef]

U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
[CrossRef]

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

1988

A. R. W. McKellar, “Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules,” J. Chem. Phys. 88, 4190–4196 (1988).
[CrossRef]

R. Courtin, “Pressure induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere,” Icarus 75, 245–254 (1988).
[CrossRef]

1987

C. G. Joslin, “Collision-induced absorption in the fundamental band of nitrogen gas,” Can. J. Phys. 65, 1629–1635 (1987).
[CrossRef]

1986

M. Moon, D. W. Oxtoby, “Collision-induced absorption in gaseous N2,” J. Chem. Phys. 84, 3830–3842 (1986).
[CrossRef]

1984

D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
[CrossRef]

1981

1979

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

1976

G. Birnbaum, E. R. Cohen, “Theory of line shape in pressure-induced absorption,” Can. J. Phys. 54, 593–602 (1976).
[CrossRef]

1973

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the earth’s atmosphere by the [N2–N2] and [N2–O2] complexes,” Atmos. Ocean Phys. 9, 411–414 (1973).

C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
[CrossRef]

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

1971

D. T. Sheng, G. E. Ewing, “Collision-induced infrared absorption of gaseous nitrogen at low temperature,” J. Chem. Phys. 55, 5425–5430 (1971).
[CrossRef]

1966

M. M. Shapiro, H. P. Gush, “The collision-bands of oxygen and nitrogen,” Can. J. Phys. 44, 949–963 (1966).
[CrossRef]

1965

S. P. Reddy, C. W. Cho, “Induced infrared absorption of nitrogen and nitrogen-foreign-gas mixtures,” Can. J. Phys. 43, 2331–2342 (1965).
[CrossRef]

1951

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

1949

M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
[CrossRef]

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.

Anderson, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Birnbaum, G.

G. Birnbaum, E. R. Cohen, “Theory of line shape in pressure-induced absorption,” Can. J. Phys. 54, 593–602 (1976).
[CrossRef]

Boissoles, J.

J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
[CrossRef]

Bouchardy, A. M.

Boulet, C.

J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
[CrossRef]

V. Menoux, R. Le Doucen, C. Boulet, A. Roblin, A. M. Bouchardy, “Collision-induced absorption in the fundamental band of N2: temperature dependence of the absorption by N2–N2 and N2–O2 pairs,” Appl. Opt. 32, 263–268 (1993).
[CrossRef] [PubMed]

Brown, R. H.

D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
[CrossRef]

Buontempo, U.

U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
[CrossRef]

Burch, D. E.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide,” Report AFCRL-71-0124 (Air Force Cambridge Research Laboratories, Bedford, Mass.1971).

Calvert, J. G.

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Chisholm, D. A.

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

Cho, C. W.

S. P. Reddy, C. W. Cho, “Induced infrared absorption of nitrogen and nitrogen-foreign-gas mixtures,” Can. J. Phys. 43, 2331–2342 (1965).
[CrossRef]

Clark, R. N.

D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Cohen, E. R.

G. Birnbaum, E. R. Cohen, “Theory of line shape in pressure-induced absorption,” Can. J. Phys. 54, 593–602 (1976).
[CrossRef]

Courtin, R.

R. Courtin, “Pressure induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere,” Icarus 75, 245–254 (1988).
[CrossRef]

Crawford, M. F.

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
[CrossRef]

Cruikshank, D. P.

D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
[CrossRef]

Dianov-Klokov, V. I.

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the earth’s atmosphere by the [N2–N2] and [N2–O2] complexes,” Atmos. Ocean Phys. 9, 411–414 (1973).

Ewing, G. E.

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
[CrossRef]

D. T. Sheng, G. E. Ewing, “Collision-induced infrared absorption of gaseous nitrogen at low temperature,” J. Chem. Phys. 55, 5425–5430 (1971).
[CrossRef]

Farmer, C. B.

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

Filabozzi, A.

U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
[CrossRef]

Framer, C. B.

Frommhold, L.

L. Frommhold, Collision-Induced Absorption in Gases (Cambridge U. Press, Cambridge, U.K., 1993), pp. 279–355.

Germain, D. St.

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide,” Report AFCRL-71-0124 (Air Force Cambridge Research Laboratories, Bedford, Mass.1971).

Gush, H. P.

M. M. Shapiro, H. P. Gush, “The collision-bands of oxygen and nitrogen,” Can. J. Phys. 44, 949–963 (1966).
[CrossRef]

Henderson, G.

C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
[CrossRef]

Il’in, Yu. A.

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

Joslin, C. G.

C. G. Joslin, “Collision-induced absorption in the fundamental band of nitrogen gas,” Can. J. Phys. 65, 1629–1635 (1987).
[CrossRef]

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Knuteson, R. O.

Lafferty, W. J.

Le Doucen, R.

Linevsky, M. J.

M. E. Thomas, M. J. Linevsky, “Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature,” J. Quant. Spectrosc. Radiat. Transfer 42, 465–476 (1989).
[CrossRef]

Locke, J. L.

M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
[CrossRef]

Long, C. A.

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
[CrossRef]

MacDonald, J. C. F.

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

Malkov, I. P.

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the earth’s atmosphere by the [N2–N2] and [N2–O2] complexes,” Atmos. Ocean Phys. 9, 411–414 (1973).

Maselli, P.

U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
[CrossRef]

McKellar, A. R. W.

A. R. W. McKellar, “Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules,” J. Chem. Phys. 88, 4190–4196 (1988).
[CrossRef]

Menoux, V.

Moon, M.

M. Moon, D. W. Oxtoby, “Collision-induced absorption in gaseous N2,” J. Chem. Phys. 84, 3830–3842 (1986).
[CrossRef]

Moskalenko, N. I.

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

Namkung, J. S.

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

Nickerson, K. E.

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

Norton, R. H.

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

Olson, W. B.

Orlando, J. J.

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

Oxtoby, D. W.

M. Moon, D. W. Oxtoby, “Collision-induced absorption in gaseous N2,” J. Chem. Phys. 84, 3830–3842 (1986).
[CrossRef]

Park, J. H.

Parzhin, S. N.

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

Pembrook, J. D.

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide,” Report AFCRL-71-0124 (Air Force Cambridge Research Laboratories, Bedford, Mass.1971).

Reddy, S. P.

S. P. Reddy, C. W. Cho, “Induced infrared absorption of nitrogen and nitrogen-foreign-gas mixtures,” Can. J. Phys. 43, 2331–2342 (1965).
[CrossRef]

Reid, F.

Revercomb, H. E.

Rinsland, C. P.

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

C. P. Rinsland, M. A. H. Smith, J. M. Russel, J. H. Park, C. B. Framer, “Stratospheric measurements of continuous absorption near 2400 cm−1,” Appl. Opt. 20, 4167–4171 (1981).
[CrossRef] [PubMed]

Roblin, A.

Rodionov, L. V.

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

Roney, P. L.

Russel, J. M.

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Shapiro, M. M.

M. M. Shapiro, H. P. Gush, “The collision-bands of oxygen and nitrogen,” Can. J. Phys. 44, 949–963 (1966).
[CrossRef]

Sheng, D. T.

D. T. Sheng, G. E. Ewing, “Collision-induced infrared absorption of gaseous nitrogen at low temperature,” J. Chem. Phys. 55, 5425–5430 (1971).
[CrossRef]

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.

Smith, M. A. H.

Smith, W. L.

Strow, L. L.

Theriault, J. M.

Thomas, M. E.

M. E. Thomas, M. J. Linevsky, “Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature,” J. Quant. Spectrosc. Radiat. Transfer 42, 465–476 (1989).
[CrossRef]

Tipping, R. H.

J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
[CrossRef]

Tobin, D. C.

Tyndall, G. S.

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

Vigasin, A.

A. Vigasin, Institute of Atmospheric Physics, Pyzhevsky per. 3, Moscow 109017, Russia (personal communication, 1995).

Welsh, H. L.

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
[CrossRef]

Zander, R.

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

Appl. Opt.

Atmos. Ocean Phys.

N. I. Moskalenko, Yu. A. Il’in, S. N. Parzhin, L. V. Rodionov, “Pressure-induced IR radiation absorption in atmospheres,” Atmos. Ocean Phys. 15, 632–637 (1979).

Atmos. Ocean Phys.

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the earth’s atmosphere by the [N2–N2] and [N2–O2] complexes,” Atmos. Ocean Phys. 9, 411–414 (1973).

Can. J. Phys.

S. P. Reddy, C. W. Cho, “Induced infrared absorption of nitrogen and nitrogen-foreign-gas mixtures,” Can. J. Phys. 43, 2331–2342 (1965).
[CrossRef]

G. Birnbaum, E. R. Cohen, “Theory of line shape in pressure-induced absorption,” Can. J. Phys. 54, 593–602 (1976).
[CrossRef]

C. G. Joslin, “Collision-induced absorption in the fundamental band of nitrogen gas,” Can. J. Phys. 65, 1629–1635 (1987).
[CrossRef]

Can. J. Phys.

M. M. Shapiro, H. P. Gush, “The collision-bands of oxygen and nitrogen,” Can. J. Phys. 44, 949–963 (1966).
[CrossRef]

Chem. Phys.

C. A. Long, G. Henderson, G. E. Ewing, “The infrared spectrum of the (N2)2 van der Waals molecule,” Chem. Phys. 2, 485–489 (1973).
[CrossRef]

Icarus

R. Courtin, “Pressure induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere,” Icarus 75, 245–254 (1988).
[CrossRef]

D. P. Cruikshank, R. H. Brown, R. N. Clark, “Nitrogen on Triton,” Icarus 58, 293–305 (1984).
[CrossRef]

J. Chem. Phys.

D. T. Sheng, G. E. Ewing, “Collision-induced infrared absorption of gaseous nitrogen at low temperature,” J. Chem. Phys. 55, 5425–5430 (1971).
[CrossRef]

J. Chem. Phys.

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

J. Chem. Phys.

M. Moon, D. W. Oxtoby, “Collision-induced absorption in gaseous N2,” J. Chem. Phys. 84, 3830–3842 (1986).
[CrossRef]

A. R. W. McKellar, “Infrared spectra of the (N2)2 and N2–Ar van der Waals molecules,” J. Chem. Phys. 88, 4190–4196 (1988).
[CrossRef]

J. Geophys. Res. D

J. J. Orlando, G. S. Tyndall, K. E. Nickerson, J. G. Calvert, “The temperature dependence of collision-induced absorption by oxygen near 6 μm,” J. Geophys. Res. D 96, 20,755–20,760 (1991).
[CrossRef]

C. P. Rinsland, R. Zander, J. S. Namkung, C. B. Farmer, R. H. Norton, “Stratospheric infrared continuum absorption observed by the ATMOS instrument,” J. Geophys. Res. D 94, 16,303–16,322 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. E. Thomas, M. J. Linevsky, “Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature,” J. Quant. Spectrosc. Radiat. Transfer 42, 465–476 (1989).
[CrossRef]

J. Boissoles, R. H. Tipping, C. Boulet, “Theoretical study of the collision-induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K,” J. Quant. Spectrosc. Radiat. Transfer 51, 615–628 (1994).
[CrossRef]

Mol. Phys.

U. Buontempo, A. Filabozzi, P. Maselli, “Collision-induced fundamental band of N2 and N2–Ar mixtures,” Mol. Phys. 67, 517–523 (1989).
[CrossRef]

Phys. Rev.

M. F. Crawford, H. L. Welsh, J. L. Locke, “Infrared absorption of oxygen and nitrogen induced by intermolecular forces,” Phys. Rev. 75, 1607–1621 (1949).
[CrossRef]

H. L. Welsh, M. F. Crawford, J. C. F. MacDonald, D. A. Chisholm, “Induced infrared absorptions of H2, N2, and O2 in the first overtone regions,” Phys. Rev. 83, 1264–1273 (1951).
[CrossRef]

Other

D. E. Burch, D. A. Gryvnak, J. D. Pembrook, “Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide,” Report AFCRL-71-0124 (Air Force Cambridge Research Laboratories, Bedford, Mass.1971).

L. Frommhold, Collision-Induced Absorption in Gases (Cambridge U. Press, Cambridge, U.K., 1993), pp. 279–355.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Anderson, J. E. A. Selby, S. A. Clough, “Users Guide to lowtran 7,” Report AFGRL-TR-0177 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric radiance and transmittance: fascod2,” in Proceedings of the Sixth Conference on Atmospheric Radiation (American Meterological Society, Boston, Mass, 1986), p. 141.

R. C. Weast, ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1981–1982), p. D-166.

A. Vigasin, Institute of Atmospheric Physics, Pyzhevsky per. 3, Moscow 109017, Russia (personal communication, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measured pure N2 normalized absorption coefficients BN2–N2. Arrows indicate the effect of increasing temperature in different regions of the spectra.

Fig. 2
Fig. 2

Measured pure N2 normalized absorption coefficients BN2–N2 showing the weak structures superimposed on the broad continuum. Arrows indicate the positions of the quadrupolar lines.

Fig. 3
Fig. 3

Measured pure N2 normalized absorption coefficients BN2–N2 near 297 and 233 K: ——, this study; – – –, Menoux et al.19

Fig. 4
Fig. 4

Measured integrated intensities of the 1–0 band for pure N2 versus temperature: △, Ref. 7; □, Ref. 8; ⋄, Ref. 10; ○, Ref. 13; ×, Ref. 16; ■, Ref. 19; ●, this study.

Fig. 5
Fig. 5

Pure N2 normalized absorption coefficients BN2–N2. Experimental values from ——, this study; – – –, Menoux et al.19; ●, values calculated from Eq. (4) and Table 1.

Fig. 6
Fig. 6

Integrated intensities of the 1–0 band for pure N2 versus temperature. Experimental values from △, Ref. 7; □, Ref. 8; ⋄, Ref. 10; ○, Ref. 13; ×, Ref. 16; ■, Ref. 19; ●, this study; ——, values calculated from Eq. (4) and Table 1.

Fig. 7
Fig. 7

N2 atmospheric transmissions computed for the conditions of Figs. 9 and 10 of Ref. 2; ——, Eq. (8) and Table 1; ●, lowtran-7. (The hatched region corresponds to the spectral range where atmospheric transmission is zero because of CO2 absorption.)

Fig. 8
Fig. 8

N2–air normalized absorption coefficients for a temperature of 210 K: ○, experimental values of Refs. 14 and 18. Values calculated with ——, Eq. (8) and Table 1; – – –, lowtran-7.

Tables (1)

Tables Icon

Table 1 BN2–N20 and βN2–N20 Parameters of the Empirical Model of Eq. (4)a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α ( σ , T , d N 2 , d B ) = d N 2 [ d N 2 B N 2 - N 2 ( σ , T ) + d B B N 2 - B ( σ , T ) ] ,
S N 2 - X band ( T ) = Band B N 2 - X ( σ , T ) d σ .
( P + a n 2 ) × ( 1 - n b ) = n R T ,
B N 2 - N 2 ( σ , T ) = B N 2 - N 2 0 ( σ ) exp [ β N 2 - N 2 0 ( σ ) ( 1 T 0 - 1 T ) ] ,
E O 2 / N 2 N 2 ( σ , T ) = B N 2 - O 2 ( σ , T ) / B N 2 - N 2 ( σ , T )
B N 2 - air ( σ , T ) = [ 0.79 + 0.21 × E O 2 / N 2 N 2 ( T ) ] × B N 2 - N 2 ( σ , T ) ,
E O 2 / N 2 N 2 ( T ) = 1.294 - 0.4545 ( T / T 0 ) .
α N 2 atm ( σ , P , T ) = ( P 273 T ) 2 ( 0.8387 - 0.0754 T T 0 ) × B N 2 - N 2 0 ( σ ) exp [ β N 2 - N 2 0 ( σ ) ( 1 T 0 - 1 T ) ] .

Metrics