Abstract

The spectroscopic techniques of degenerate four-wave mixing (DFWM) and laser-induced fluorescence (LIF) have been applied to the detection of minor species for combustion diagnostics. We compare the results obtained when these techniques are used to detect NO2. Previous results show that DFWM signals increase for NO2 when buffer gas is added and that LIF signals are greatly reduced under the same circumstances. We make direct quantitative comparisons of these two techniques and discuss their suitability for making measurements of NO2 in combustion environments.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulations,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia,1992).
  2. J. A. Streeton, Air Pollution Health Effects and Air Quality Objectives in Victoria (Victorian Environmental Protection Authority, Melbourne, Australia, 1990).
  3. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clarke, R. E. Hester, eds. (Wiley, London, 1987).
  4. B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
    [CrossRef]
  5. B. A. Mann, R. F. White, “Detection of nitrogen dioxide using LIF and DFWM: effect of buffer gas,” in Proceedings of the DSTO Workshop on Laser Diagnostics in Fluid Mechanics and Combustion (DSTO Aeronautical Research Laboratory, Melbourne, Australia, 1993).
  6. R. A. Fisher, Optical Phase Conjugation (Academic, London, 1983).
  7. R. L. Abrams, R. C. Lind, “Degenerate four wave mixing in absorbing media,” Opt. Lett. 2, 94–96 (1978).
    [CrossRef] [PubMed]
  8. J. Pender, L. Hesselink, “Phase conjugation in a flame,” Opt. Lett. 10, 264–266 (1985).
    [CrossRef] [PubMed]
  9. P. Ewart, S. V. O'Leary, “Detection of OH in a flame by degenerate four-wave mixing,” Opt. Lett. 11, 279–281 (1986).
    [CrossRef] [PubMed]
  10. R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,”in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 1653–1659.
  11. T. Dreier, D. J. Rakestraw, “Degenerate four wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B 50, 479–485 (1990).
    [CrossRef]
  12. S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
    [CrossRef]
  13. M. Versluis, G. Meijer, D. W. Chandler, “Degenerate four-wave mixing with a tunable excimer laser,” Appl. Opt. 33, 3289–3295 (1994).
    [CrossRef] [PubMed]
  14. P. Ewart, P. Snowdon, I. Magnusson, “Two dimensional phase conjugate imaging of atomic distributions in flames by degenerate four wave mixing,” Opt. Lett. 14, 563–565 (1989).
    [CrossRef] [PubMed]
  15. G. Hall, B. J. Whitaker, “Laser-induced grating spectroscopy,” J. Chem. Soc. Faraday Trans. 10, 1–16 (1994).
    [CrossRef]
  16. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  17. M. J. Dyer, D. R. Crosley, “Two-dimensional imaging of OH laser-induced fluorescence in a flame,” Opt. Lett. 7, 382–384 (1982).
    [CrossRef] [PubMed]
  18. G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).
  19. M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986).
    [CrossRef] [PubMed]
  20. A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.
  21. R. H. Barnes, J. F. Kircher, “Laser NO2 fluorescence measurements in flames,” Appl. Opt. 17, 1099–1102 (1978).
    [CrossRef] [PubMed]
  22. R. J. Cattolica, “Combustion-torch ignition: fluorescence imaging of NO2,” in Proceedings of the Twenty-First International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1986), pp. 1551–1559.
  23. B. A. Mann, “Novel coherent laser spectroscopic techniques for minor species combustion diagnostics,” Ph.D. dissertation (Reading University, Reading, England, 1991).
  24. J. D. Garman, D. Dunn-Rankin, “Dependence of NO2 degenerate four-wave mixing signals on buffer gas pressure,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1862, 133 (1993).
  25. B. A. Mann, D. Proctor, poster presented at the Twenty-Fourth International Symposium on Combustion, Sydney, Australia, July 1992.
  26. R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
    [CrossRef]
  27. N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
    [CrossRef]
  28. A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in the 3700–4600 Å region,” Can. J. Phys. 43, 74–81 (1964).
    [CrossRef]
  29. E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
    [CrossRef]

1994 (3)

M. Versluis, G. Meijer, D. W. Chandler, “Degenerate four-wave mixing with a tunable excimer laser,” Appl. Opt. 33, 3289–3295 (1994).
[CrossRef] [PubMed]

G. Hall, B. J. Whitaker, “Laser-induced grating spectroscopy,” J. Chem. Soc. Faraday Trans. 10, 1–16 (1994).
[CrossRef]

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
[CrossRef]

1992 (3)

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

1990 (1)

T. Dreier, D. J. Rakestraw, “Degenerate four wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B 50, 479–485 (1990).
[CrossRef]

1989 (1)

1986 (2)

1985 (1)

1984 (1)

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

1982 (1)

1978 (2)

1964 (1)

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in the 3700–4600 Å region,” Can. J. Phys. 43, 74–81 (1964).
[CrossRef]

Abrams, R. L.

Allen, M. G.

Arai, T.

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Arnold, A.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Astill, A. G.

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

Barnes, R. H.

Bowman, C. T.

C. T. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulations,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia,1992).

Cattolica, R. J.

R. J. Cattolica, “Combustion-torch ignition: fluorescence imaging of NO2,” in Proceedings of the Twenty-First International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1986), pp. 1551–1559.

Chandler, D. W.

Crosley, D. R.

Danehy, P. M.

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

Dinkelacker, F.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Douglas, A. E.

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in the 3700–4600 Å region,” Can. J. Phys. 43, 74–81 (1964).
[CrossRef]

Dreier, T.

T. Dreier, D. J. Rakestraw, “Degenerate four wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B 50, 479–485 (1990).
[CrossRef]

Dunn-Rankin, D.

J. D. Garman, D. Dunn-Rankin, “Dependence of NO2 degenerate four-wave mixing signals on buffer gas pressure,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1862, 133 (1993).

Dyer, M. J.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Ewart, P.

Farrow, R. L.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
[CrossRef]

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,”in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 1653–1659.

Fisher, R. A.

R. A. Fisher, Optical Phase Conjugation (Academic, London, 1983).

Friedman-Hill, E. J.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
[CrossRef]

Garman, J. D.

J. D. Garman, D. Dunn-Rankin, “Dependence of NO2 degenerate four-wave mixing signals on buffer gas pressure,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1862, 133 (1993).

Green, D. S.

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Greenhalgh, D. A.

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clarke, R. E. Hester, eds. (Wiley, London, 1987).

Hall, G.

G. Hall, B. J. Whitaker, “Laser-induced grating spectroscopy,” J. Chem. Soc. Faraday Trans. 10, 1–16 (1994).
[CrossRef]

Hanson, R. K.

M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986).
[CrossRef] [PubMed]

G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).

Heitzman, T.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Hesselink, L.

Holmes, B. E.

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

Howe, R. D.

M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986).
[CrossRef] [PubMed]

G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).

Huber, K. P.

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in the 3700–4600 Å region,” Can. J. Phys. 43, 74–81 (1964).
[CrossRef]

Iijima, H.

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Jeffries, J. B.

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

Kircher, J. F.

Knapp, K.

G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).

Kychakoff, G.

G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).

Lind, R. C.

Magnusson, I.

Mann, B. A.

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

B. A. Mann, R. F. White, “Detection of nitrogen dioxide using LIF and DFWM: effect of buffer gas,” in Proceedings of the DSTO Workshop on Laser Diagnostics in Fluid Mechanics and Combustion (DSTO Aeronautical Research Laboratory, Melbourne, Australia, 1993).

B. A. Mann, “Novel coherent laser spectroscopic techniques for minor species combustion diagnostics,” Ph.D. dissertation (Reading University, Reading, England, 1991).

B. A. Mann, D. Proctor, poster presented at the Twenty-Fourth International Symposium on Combustion, Sydney, Australia, July 1992.

Meijer, G.

Monkhouse, P.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

O'Leary, S. V.

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

P. Ewart, S. V. O'Leary, “Detection of OH in a flame by degenerate four-wave mixing,” Opt. Lett. 11, 279–281 (1986).
[CrossRef] [PubMed]

Pender, J.

Proctor, D.

B. A. Mann, D. Proctor, poster presented at the Twenty-Fourth International Symposium on Combustion, Sydney, Australia, July 1992.

Rahn, L. A.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
[CrossRef]

Rakestraw, D. J.

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

T. Dreier, D. J. Rakestraw, “Degenerate four wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B 50, 479–485 (1990).
[CrossRef]

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,”in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 1653–1659.

Schafer, M.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Sethuraman, S.

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Sick, V.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Snowdon, P.

Streeton, J. A.

J. A. Streeton, Air Pollution Health Effects and Air Quality Objectives in Victoria (Victorian Environmental Protection Authority, Melbourne, Australia, 1990).

Sugimoto, N.

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Takeuchi, N.

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Takezawa, S.

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,”in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 1653–1659.

Versluis, M.

Whitaker, B. J.

G. Hall, B. J. Whitaker, “Laser-induced grating spectroscopy,” J. Chem. Soc. Faraday Trans. 10, 1–16 (1994).
[CrossRef]

White, R. F.

B. A. Mann, R. F. White, “Detection of nitrogen dioxide using LIF and DFWM: effect of buffer gas,” in Proceedings of the DSTO Workshop on Laser Diagnostics in Fluid Mechanics and Combustion (DSTO Aeronautical Research Laboratory, Melbourne, Australia, 1993).

Williams, S.

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Wolfrum, J.

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

Zare, R. N.

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Dreier, D. J. Rakestraw, “Degenerate four wave mixing diagnostics on OH and NH radicals in flames,” Appl. Phys. B 50, 479–485 (1990).
[CrossRef]

Appl. Phys. B (1)

B. A. Mann, S. V. O'Leary, A. G. Astill, D. A. Greenhalgh, “Degenerate four wave mixing in nitrogen dioxide: application to combustion diagnostics,” Appl. Phys. B 54, 271–277 (1992).
[CrossRef]

Can. J. Phys. (1)

A. E. Douglas, K. P. Huber, “The absorption spectrum of NO2 in the 3700–4600 Å region,” Can. J. Phys. 43, 74–81 (1964).
[CrossRef]

Chem. Phys. Lett. (1)

N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa, “Observation of spin splittings in the 2B1 state of NO2 by means of polarisation spectroscopy,” Chem. Phys. Lett. 106, 403–407 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

R. L. Vander Wal, B. E. Holmes, J. B. Jeffries, P. M. Danehy, R. L. Farrow, D. J. Rakestraw, “Detection of HF using infrared degenerate four-wave mixing,” Chem. Phys. Lett. 191, 251–258 (1992).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Williams, D. S. Green, S. Sethuraman, R. N. Zare, “Detection of trace species in hostile environments using degenerate four-wave mixing: CH in an atmospheric-pressure flame,” J. Am. Chem. Soc. 114, 9122–9130 (1992).
[CrossRef]

J. Chem. Phys. (1)

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+−2Π,” J. Chem. Phys. 100, 4065–4076 (1994).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

G. Hall, B. J. Whitaker, “Laser-induced grating spectroscopy,” J. Chem. Soc. Faraday Trans. 10, 1–16 (1994).
[CrossRef]

Opt. Lett. (6)

Other (13)

A. Arnold, F. Dinkelacker, T. Heitzman, P. Monkhouse, M. Schafer, V. Sick, J. Wolfrum, “DI diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 879–887.

R. J. Cattolica, “Combustion-torch ignition: fluorescence imaging of NO2,” in Proceedings of the Twenty-First International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1986), pp. 1551–1559.

B. A. Mann, “Novel coherent laser spectroscopic techniques for minor species combustion diagnostics,” Ph.D. dissertation (Reading University, Reading, England, 1991).

J. D. Garman, D. Dunn-Rankin, “Dependence of NO2 degenerate four-wave mixing signals on buffer gas pressure,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1862, 133 (1993).

B. A. Mann, D. Proctor, poster presented at the Twenty-Fourth International Symposium on Combustion, Sydney, Australia, July 1992.

R. L. Vander Wal, R. L. Farrow, D. J. Rakestraw, “High resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,”in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia, 1992), pp. 1653–1659.

B. A. Mann, R. F. White, “Detection of nitrogen dioxide using LIF and DFWM: effect of buffer gas,” in Proceedings of the DSTO Workshop on Laser Diagnostics in Fluid Mechanics and Combustion (DSTO Aeronautical Research Laboratory, Melbourne, Australia, 1993).

R. A. Fisher, Optical Phase Conjugation (Academic, London, 1983).

C. T. Bowman, “Control of combustion-generated nitrogen oxide emissions: technology driven by regulations,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (Combustion Institute, Sydney, Australia,1992).

J. A. Streeton, Air Pollution Health Effects and Air Quality Objectives in Victoria (Victorian Environmental Protection Authority, Melbourne, Australia, 1990).

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clarke, R. E. Hester, eds. (Wiley, London, 1987).

G. Kychakoff, R. D. Howe, R. K. Hanson, K. Knapp, “Flow visualization in combustion gases,” in Proceedings of the Twenty-First Aerospace Meeting Publ. AIAA-83-0405 (American Institute of Aeronautics and Astronautics, New York, 1983).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical beam geometry for DFWM.

Fig. 2
Fig. 2

Schematic of the LIF experiment. CRO, cathode-ray oscilloscope.

Fig. 3
Fig. 3

Schematic of the DFWM experiment: M1, M2, M4, high reflectors at 45°; M3, high reflector at 90°. BS, beam splitter; P's, polarizers.

Fig. 4
Fig. 4

Graph of the dependence of the LIF signal in NO2 on buffer gas (nitrogen and air). The curves are best fits to the data. On the same scale the dependence of the DFWM signal in NO2 on buffer-gas pressure (nitrogen) is shown. In all cases the same quantity (7.6 Torr) of NO2 was used. Buffer gas was added in small increments up to 760-Torr total pressure. The DFWM data were taken at a much lower PMT gain setting but have been calibrated to the same scale as the LIF data, which was taken at high PMT gain.

Fig. 5
Fig. 5

Images taken with an intensified CID camera: (a) line LIF in 7.6 Torr of NO2, camera gain 4.2; (b) line LIF in 1% NO2 in nitrogen at 760 Torr, gain 6.4; (c) DFWM signal in 7.6 Torr NO2, gain 4.0; and (d) DFWM in 1% NO2 in nitrogen at 760 Torr, gain 1.4 (the central zone of this image is all signal).

Fig. 6
Fig. 6

Simultaneous DFWM and LIF (excitation) spectra in NO2. The LIF lines are coincident with the DFWM at some peaks and are difficult to distinguish. The intensities of the DFWM and the LIF spectra are not to the same scale.

Fig. 7
Fig. 7

Simultaneous LIF and DFWM spectra in NO2, taken with a pressure-tuned étalon in the laser cavity. The intensities of the DFWM and the LIF spectra are not to the same scale.

Fig. 8
Fig. 8

Two DFWM spectra over the same range, taken when the intracavity pressure-tuned étalon was tuned. Trace (a) shows the resulting spectrum for pure NO2 (5 Torr). Trace (b) shows the spectrum obtained when air is added to the NO2 up to atmospheric pressure. The two traces have been rescaled to assist spectral comparison.

Metrics