Abstract

We propose a new technique for remote sensing: photon-counting laser mapping. Microchannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 106 detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10−10 s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Elachi, Spaceborne Radar Remote Sensing: Applications and Techniques (IEEE Press, New York, 1988), Chap. 4, p. 109.
  2. T. G. Kyle, “High resolution laser imaging system,” Appl. Opt. 28, 2651–2656 (1989).
    [CrossRef] [PubMed]
  3. S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
    [CrossRef]
  4. D. Letalick, M. Millnert, I. Renhorn, “Terrain segmentation using laser radar range data,” Appl. Opt. 31, 2883–2890 (1992)
    [CrossRef] [PubMed]
  5. J. L. Bufton, “Laser altimetry measurements from aircraft and spacecraft,” Proc. IEEE 77, 463–477 (1989).
    [CrossRef]
  6. F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
    [CrossRef]
  7. M. H. Baron, W. C. Priedhorsky, “Crossed delay line detector for ground and space based applications,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 188–197 (1993).
  8. J. A. Reagan, D. A. Zielinskie, “Spaceborne lidar remote sensing techniques aided by surface returns,” Opt. Eng. 30, 96–102 (1991).
    [CrossRef]
  9. H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 61–69 (1983).
  10. E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).
  11. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973), Chap. 10, p. 202.
  12. “Safe use of lasers,” Standard Z 136.1 (American National Standards Institute, New York, 1986).
  13. A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
    [CrossRef]
  14. M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
    [CrossRef]
  15. J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
    [CrossRef]
  16. R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).
  17. E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” Tech. Note No. 127 (ITT Electro-Optical Products Division, Roanoak, Va., 1980).
  18. M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
    [CrossRef]
  19. B. T. Turko, “Space borne event timer,” IEEE Trans. Nucl. Sci. NS-27, 399–404 (1980).
    [CrossRef]
  20. B. T. Turko, “Multichannel interval timer,” IEEE Trans. Nucl. Sci. NS-31, 167–171 (1984).
    [CrossRef]
  21. M. Lampton, R. Raffanti, “A high-speed wide dynamic range time-to-digital converter,” Rev. Sci. Instrum. 65, 3577–3584 (1994).
    [CrossRef]
  22. B. T. Turko, R. C. Smith, “A precision timing discriminator for high density detector systems,” IEEE Trans. Nucl. Sci. 39, 1311–1315 (1992).
    [CrossRef]
  23. B. Bartsch, T. Braeske, R. Reuter, “Oceanic lidar: radiative transfer in the atmosphere at operating altitudes from 100 m to 100 km,” Appl. Opt. 32, 6732–6741 (1993).
    [CrossRef] [PubMed]
  24. The quantity rcross is the distance from the platform to the point at which the edge of the outgoing beam passes through the center of the field of view of the collecting telescope.
  25. A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).
  26. J. Thorpe, “Aerial photogrammetry: state of the industry in the US,” Photogramm. Eng. Remote Sensing 59, 1599–1604 (1993)
  27. J. Meyer-Hilberg, T. Jacob, “High accuracy navigation and landing system using GPS/IMU system integration,” IEEE Aerospace Electron. Syst. Mag. 9 (7), 11–17 (1994).
    [CrossRef]
  28. E. S. Davis, Organization 3300, Jet Propulsion Laboratory, Pasadena, Calif. 91109-8099 (personal communication, 1994).
  29. F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
    [CrossRef]
  30. C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. Allahdadi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1951, 67–75 (1993).
  31. W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).
  32. J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).
  33. J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).
  34. E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.
  35. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
    [CrossRef]

1994

M. Lampton, R. Raffanti, “A high-speed wide dynamic range time-to-digital converter,” Rev. Sci. Instrum. 65, 3577–3584 (1994).
[CrossRef]

J. Meyer-Hilberg, T. Jacob, “High accuracy navigation and landing system using GPS/IMU system integration,” IEEE Aerospace Electron. Syst. Mag. 9 (7), 11–17 (1994).
[CrossRef]

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

1993

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).

J. Thorpe, “Aerial photogrammetry: state of the industry in the US,” Photogramm. Eng. Remote Sensing 59, 1599–1604 (1993)

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

B. Bartsch, T. Braeske, R. Reuter, “Oceanic lidar: radiative transfer in the atmosphere at operating altitudes from 100 m to 100 km,” Appl. Opt. 32, 6732–6741 (1993).
[CrossRef] [PubMed]

1992

D. Letalick, M. Millnert, I. Renhorn, “Terrain segmentation using laser radar range data,” Appl. Opt. 31, 2883–2890 (1992)
[CrossRef] [PubMed]

B. T. Turko, R. C. Smith, “A precision timing discriminator for high density detector systems,” IEEE Trans. Nucl. Sci. 39, 1311–1315 (1992).
[CrossRef]

1991

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

J. A. Reagan, D. A. Zielinskie, “Spaceborne lidar remote sensing techniques aided by surface returns,” Opt. Eng. 30, 96–102 (1991).
[CrossRef]

1990

M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
[CrossRef]

1989

J. L. Bufton, “Laser altimetry measurements from aircraft and spacecraft,” Proc. IEEE 77, 463–477 (1989).
[CrossRef]

T. G. Kyle, “High resolution laser imaging system,” Appl. Opt. 28, 2651–2656 (1989).
[CrossRef] [PubMed]

1987

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

1984

M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
[CrossRef]

B. T. Turko, “Multichannel interval timer,” IEEE Trans. Nucl. Sci. NS-31, 167–171 (1984).
[CrossRef]

1983

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 61–69 (1983).

E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).

1980

B. T. Turko, “Space borne event timer,” IEEE Trans. Nucl. Sci. NS-27, 399–404 (1980).
[CrossRef]

1973

A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
[CrossRef]

Abshire, J. B.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

Akiyoshi, H.

M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
[CrossRef]

Albright, K. A.

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone, London, 1973), Chap. 10, p. 202.

Arnold, D.

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

Baron, M.

C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. Allahdadi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1951, 67–75 (1993).

Baron, M. H.

M. H. Baron, W. C. Priedhorsky, “Crossed delay line detector for ground and space based applications,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 188–197 (1993).

Bartsch, B.

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

Bergamini, P.

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

Berger, T. E.

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

Bloch, J. J.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Bowyer, C. S.

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Braeske, T.

Bufton, J. L.

J. L. Bufton, “Laser altimetry measurements from aircraft and spacecraft,” Proc. IEEE 77, 463–477 (1989).
[CrossRef]

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

Bumala, R. W.

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

Cocard, M.

A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).

Cohen, S. C.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

Coyle, L. M.

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

Davis, E. S.

E. S. Davis, Organization 3300, Jet Propulsion Laboratory, Pasadena, Calif. 91109-8099 (personal communication, 1994).

De Carlo, F.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Degnan, J. J.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

Dill, B.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Dingler, R.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Eberhardt, E. H.

E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” Tech. Note No. 127 (ITT Electro-Optical Products Division, Roanoak, Va., 1980).

Elachi, C.

C. Elachi, Spaceborne Radar Remote Sensing: Applications and Techniques (IEEE Press, New York, 1988), Chap. 4, p. 109.

Fleeter, R.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Garvin, J. B.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

Ginen, A.

A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).

Hindman, M.

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

Ho, C.

C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. Allahdadi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1951, 67–75 (1993).

Holden, D. H.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Huffman, G.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Hurwitz, M.

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Irvine, W. M.

A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
[CrossRef]

Ito, M.

M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
[CrossRef]

Jacob, T.

J. Meyer-Hilberg, T. Jacob, “High accuracy navigation and landing system using GPS/IMU system integration,” IEEE Aerospace Electron. Syst. Mag. 9 (7), 11–17 (1994).
[CrossRef]

Kahle, H. G.

A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).

Klick, D. I.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Knight, F. K.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Kume, H.

M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
[CrossRef]

Kyle, T. G.

Lampton, M.

M. Lampton, R. Raffanti, “A high-speed wide dynamic range time-to-digital converter,” Rev. Sci. Instrum. 65, 3577–3584 (1994).
[CrossRef]

Lampton, M. L.

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Lane, A. P.

A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
[CrossRef]

Letalick, D.

Lunsford, J. S.

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

Lyle-Broadfoot, A.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Maeda, M.

M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
[CrossRef]

Mattison, E. M.

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

Meyer-Hilberg, J.

J. Meyer-Hilberg, T. Jacob, “High accuracy navigation and landing system using GPS/IMU system integration,” IEEE Aerospace Electron. Syst. Mag. 9 (7), 11–17 (1994).
[CrossRef]

Miller, R.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Millnert, M.

Oba, K.

M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
[CrossRef]

Piaget, C.

E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).

Pollehn, H. K.

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 61–69 (1983).

Priedhorsky, W. C.

M. H. Baron, W. C. Priedhorsky, “Crossed delay line detector for ground and space based applications,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 188–197 (1993).

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. Allahdadi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1951, 67–75 (1993).

Raffanti, R.

M. Lampton, R. Raffanti, “A high-speed wide dynamic range time-to-digital converter,” Rev. Sci. Instrum. 65, 3577–3584 (1994).
[CrossRef]

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Reagan, J. A.

J. A. Reagan, D. A. Zielinskie, “Spaceborne lidar remote sensing techniques aided by surface returns,” Opt. Eng. 30, 96–102 (1991).
[CrossRef]

Renhorn, I.

Reuter, R.

Richard, J. C.

E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).

Roaux, E.

E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).

Rousell-Dupré, D. C. A.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Ryan-Howard, D. P.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Sandel, B. R.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Sibata, T.

M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
[CrossRef]

Sicuranza, G. L.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Siegmund, O. H. M.

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Slater, D. C.

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

Smith, B. W.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Smith, R. C.

B. T. Turko, R. C. Smith, “A precision timing discriminator for high density detector systems,” IEEE Trans. Nucl. Sci. 39, 1311–1315 (1992).
[CrossRef]

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

Spinhirne, J. D.

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

Stalio, R.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Stock, J. M.

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

Theriault, J. R.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

Thorpe, J.

J. Thorpe, “Aerial photogrammetry: state of the industry in the US,” Photogramm. Eng. Remote Sensing 59, 1599–1604 (1993)

Timothy, J. G.

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

Trampus, P.

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Turko, B. T.

B. T. Turko, R. C. Smith, “A precision timing discriminator for high density detector systems,” IEEE Trans. Nucl. Sci. 39, 1311–1315 (1992).
[CrossRef]

B. T. Turko, “Multichannel interval timer,” IEEE Trans. Nucl. Sci. NS-31, 167–171 (1984).
[CrossRef]

B. T. Turko, “Space borne event timer,” IEEE Trans. Nucl. Sci. NS-27, 399–404 (1980).
[CrossRef]

Vessot, R. F. C.

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

Warner, R.

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

Wilson, K.

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

Zielinskie, D. A.

J. A. Reagan, D. A. Zielinskie, “Spaceborne lidar remote sensing techniques aided by surface returns,” Opt. Eng. 30, 96–102 (1991).
[CrossRef]

Ann. Rev. Astron. Astrophys.

J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Ann. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

Appl. Opt.

Astron. J.

A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
[CrossRef]

IEEE Aerospace Electron. Syst. Mag.

J. Meyer-Hilberg, T. Jacob, “High accuracy navigation and landing system using GPS/IMU system integration,” IEEE Aerospace Electron. Syst. Mag. 9 (7), 11–17 (1994).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, J. B. Abshire, “The geoscience laser altimetry/ranging system,” IEEE Trans. Geosci. Remote Sensing GRS-25, 581–591 (1987).
[CrossRef]

IEEE Trans. Nucl. Sci.

M. Ito, H. Kume, K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. NS-31, 408–412 (1984).
[CrossRef]

B. T. Turko, “Space borne event timer,” IEEE Trans. Nucl. Sci. NS-27, 399–404 (1980).
[CrossRef]

B. T. Turko, “Multichannel interval timer,” IEEE Trans. Nucl. Sci. NS-31, 167–171 (1984).
[CrossRef]

B. T. Turko, R. C. Smith, “A precision timing discriminator for high density detector systems,” IEEE Trans. Nucl. Sci. 39, 1311–1315 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

M. Maeda, T. Sibata, H. Akiyoshi, “Optimum wavelengths in solar-blind UV ozone lidars,” Jpn. J. Appl. Phys. 29, 2843–2846 (1990).
[CrossRef]

Opt. Eng.

F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, “Visible laser radar: range tomography and angle-angle-range detection,” Opt. Eng. 30, 55–65 (1991).
[CrossRef]

J. A. Reagan, D. A. Zielinskie, “Spaceborne lidar remote sensing techniques aided by surface returns,” Opt. Eng. 30, 96–102 (1991).
[CrossRef]

F. De Carlo, R. Stalio, P. Trampus, A. Lyle-Broadfoot, B. R. Sandel, G. L. Sicuranza, “Description and analysis of an algorithm for star identification, pointing, and tracking systems,” Opt. Eng. 33, 2738–2745 (1994).
[CrossRef]

Photo Electronic Imaging Devices Adv. Electron. Electron Phys.

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 61–69 (1983).

E. Roaux, J. C. Richard, C. Piaget, “Third generation image intensifier,” Photo Electronic Imaging Devices Adv. Electron. Electron Phys. 64, 71–75 (1983).

Photogramm. Eng. Remote Sensing

A. Ginen, M. Cocard, H. G. Kahle, “Photogrammetry and kinematic GPS: results of a high accuracy test,” Photogramm. Eng. Remote Sensing 59, 1643–1650 (1993).

J. Thorpe, “Aerial photogrammetry: state of the industry in the US,” Photogramm. Eng. Remote Sensing 59, 1599–1604 (1993)

Proc. IEEE

J. L. Bufton, “Laser altimetry measurements from aircraft and spacecraft,” Proc. IEEE 77, 463–477 (1989).
[CrossRef]

Rev. Sci. Instrum.

M. Lampton, R. Raffanti, “A high-speed wide dynamic range time-to-digital converter,” Rev. Sci. Instrum. 65, 3577–3584 (1994).
[CrossRef]

Other

M. H. Baron, W. C. Priedhorsky, “Crossed delay line detector for ground and space based applications,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 188–197 (1993).

C. W. Allen, Astrophysical Quantities (Athlone, London, 1973), Chap. 10, p. 202.

“Safe use of lasers,” Standard Z 136.1 (American National Standards Institute, New York, 1986).

The quantity rcross is the distance from the platform to the point at which the edge of the outgoing beam passes through the center of the field of view of the collecting telescope.

C. Elachi, Spaceborne Radar Remote Sensing: Applications and Techniques (IEEE Press, New York, 1988), Chap. 4, p. 109.

R. C. Smith, K. A. Albright, M. Hindman, J. S. Lunsford, K. Wilson, “Very high event rate, 10 ps time to digital converter,” IEEE Trans. Nucl. Sci. (to be published).

E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” Tech. Note No. 127 (ITT Electro-Optical Products Division, Roanoak, Va., 1980).

C. Ho, W. C. Priedhorsky, M. Baron, “Detecting small debris using a ground-based photon-counting detector,” in Space Debris Detection and Mitigation, F. Allahdadi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1951, 67–75 (1993).

W. C. Priedhorsky, J. J. Bloch, D. H. Holden, D. C. A. Rousell-Dupré, B. W. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, R. Fleeter, “ALEXIS small satellite project: initial flight results,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 114–127 (1993).

J. G. Timothy, P. Bergamini, T. E. Berger, R. W. Bumala, D. C. Slater, “Performance characteristics of the MAMA detectors for the SUMER instrument on the SOHO mission,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 69–76 (1993).

J. M. Stock, O. H. M. Siegmund, M. Hurwitz, R. Raffanti, C. S. Bowyer, M. L. Lampton, “Berkeley EUV spectrometer microchannel plate detectors for ORFEUS,” in EUV, X-Ray, and Gamma Ray Instrumentation for Astronomy IV, O. H. Siegmund, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2006, 128–138 (1993).

E. M. Mattison, L. M. Coyle, R. F. C. Vessot, D. Arnold, R. C. Smith, “A time transfer technique using a space-borne hydrogen maser and laser pulse timing,” in Proceedings of the 1994 IEEE International Frequency Control Symposium (IEEE, New York, 1994), pp. 684–686.

E. S. Davis, Organization 3300, Jet Propulsion Laboratory, Pasadena, Calif. 91109-8099 (personal communication, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photon-counting laser mapping in the monostatic mode. Short, high repetion rates from a laser illuminator reflect from the ground and are collected in a telescope. The combination of position and high-resolution time date from the MCP/CDL detector locates the scattering point for each photon in three axes.

Fig. 2
Fig. 2

Simulated photon-counting laser-mapper image of a hypothetical surface. The illuminator and the collecting telescope are in the +z direction. Photons returned from the ground trace the topography of the surface. Photons that scatter from the path, or that derive from natural and artificial backgrounds, yield a uniform background in the three-dimensional space. Locally enhanced backgrounds, as from an artificial light, form a column of background events that is uniform in the z direction.

Fig. 3
Fig. 3

Range ambiguity inherent in a rapidly pulsed laser. Because, for a regularly pulsed laser, return photons cannot be unambiguously matched to outgoing pulses, the range of each photon is uncertain to ±N ΔR.

Fig. 4
Fig. 4

Schematic of a photon-counting laser-mapping system. Four independent timing channels (X1, X2, Y1, Y2) measure the time of arrival of signals from the detector referenced to a common clock. The fifth channel records the time of each laser-pulse emission referenced to the same clock. ADCS, attitude determination and control system; GPS, Global Positioning System.

Fig. 5
Fig. 5

Input topography, assigned as an array on the ground with grid size 10 cm. The foreground cylinder (C1) is 1 m in height and 80 cm in diameter. The background box complex consists of a 3 m × 4 m box that is 1 m in height (B1), a 1.5 m × 1.5 m box of 75-cm height stacked on top of B1 (B2), and a box of 3 cm × 0.2 cm of 1.4-m height to the left (B3).

Fig. 6
Fig. 6

(a) Central 6.4 m × 6.4 m region of the image. The time of flight (vertical axis) for each photon is calculated modulo the 333-ns pulse period. All 48,000 photons from the 6.4 m × 6.4 m area are included. The background-to-signal photon ratio, N back/N sig, is approximately 1.7. (b) Time series of the data set shown in (a), binned at 200 ps. The peaks indicate return surfaces. The main peak, centered at 168 ns, is the ground. The spread of this peak is the result of the finite slope in the ground, which is evident in the close-up view. The peaks at 174, 176, and 179 ns are features C1 + B1, B3, and B2 from Fig. 5, respectively. The low count region between 145 and 165 ns is due to detector dead time. (c) Background-subtracted data set. The filtered data set consists of approximately 18,000 photons, shown in a space measuring 6.4 m × 6.4 m × 3 m. Note that the subtle slope of the ground is clearly visible.

Fig. 7
Fig. 7

Calculated topography based on the data set derived in Fig. 6(c). All heights are relative. The topography is, in effect, smoothed by the 30 cm × 30 cm kernel used in its determination. Most of the features in Fig. 5 are reproduced, including the ground slope. Because the input box B3 is only 20 cm wide, the degradation of this feature is not unexpected.

Tables (1)

Tables Icon

Table 1 Possible Parameters for Photon-Counting Laser Mappers

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N sig = { P laser / h ν [ exp ( 2 τ / cos θ ) ] } ( α / π ) ( A eff / R 2 ) ,
P laser = 5.7 mW [ 0 . 90 / exp ( τ / cos θ ) ] 2 × ( 0 . 4 / α ) ( 850 nm / λ laser ) × ( 400 cm 2 / A eff ) ( R / 10 km ) 2 .
T 2 sin β w / c ,
Δ x 2 = Δ diff 2 + Δ atmos 2 + Δ pointing 2 + Δ location 2 ,
Δ z 2 = Δ timing 2 + Δ slant 2 + Δ location 2 .
Δ diff = R λ laser / D ,
Δ atmos = h turb Δ ζ sec θ ,
Δ pointing = R Δ θ ,
Δ t 2 = Δ p 2 + Δ d 2 ,
Δ timing = Δ t c / 2 .
Δ slant = tan β Δ x ,

Metrics