Abstract

Several different bacteriorhodopsin (BR) films are characterized with respect to general holographic properties. Experimental measurements include diffraction efficiency and sensitivity as functions of the writing intensity and grating frequency, hologram thermal-decay behavior, diffraction efficiency as a function of the grating tilt within the film and the modulation depth, and estimates of the refractive-index change from the diffraction-efficiency data. The films studied include those made from wildtype BR and the genetic variants D96N and D96N/T46V. The film holographic properties were found to be relatively insensitive to the grating frequency and the grating-tilt angle. The diffraction efficiency dropped off more sharply as a function of the modulation depth than did a purely linear medium, and only the hydrated wildtype film exhibited significant behavior variation with different writing intensities because of its short M-state lifetime. The maximum diffraction efficiency measured was approximately 7.5% for a hydrated D96N BR film. We also find that the hydrated BR films exhibit significantly higher refractive-index modulation than do dry films.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Renner, N. Hampp, “Bacteriorhodopsin films for dynamic time average interferometry,” Opt. Commun. 96, 142–149 (1993).
    [CrossRef]
  2. J. E. Millerd, N. J. Brock, M. S. Brown, P. A. DeBarber, “Real-time resonant holography using bacteriorhodopsin thin films,” Opt. Lett. 20, 626–628 (1995).
    [CrossRef] [PubMed]
  3. N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant ASp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
    [CrossRef] [PubMed]
  4. J. D. Downie, “Real-time holographic image correction using bacteriorhodopsin,” Appl. Opt. 33, 4353–4357 (1994).
    [CrossRef] [PubMed]
  5. R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Ann. Rev. Phys. Chem. 41, 683–733 (1990).
    [CrossRef]
  6. C. Bräuchle, N. Hampp, D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
    [CrossRef]
  7. G. Váró, J. K. Lanyi, “Distortions in the photocycle of bacteriorhodopsin at moderate dehydration,” Biophys. J. 59, 313–322 (1990).
    [CrossRef]
  8. R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
    [CrossRef] [PubMed]
  9. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993).
    [CrossRef] [PubMed]
  10. A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
    [CrossRef]
  11. J. D. Downie, “Optical logarithmic transformation of speckle images with bacteriorhodopsin films,” Opt. Lett. 20, 201–203 (1995).
    [CrossRef] [PubMed]
  12. N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
    [CrossRef]
  13. H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
  14. L. R. Lindvold, H. Imam, P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32–38 (1995).
    [CrossRef]
  15. N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
    [CrossRef]
  16. E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Photoinduced anisotropy, four-wave mixing and phase conjugation in materials based on bacteriorhodopsin,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. SPIE 1280, 308–313 (1990).
  17. E. Y. Korchemskaya, M. S. Soskin, “Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin,” Opt. Eng. 33, 3456–3460 (1994).
    [CrossRef]

1995 (3)

1994 (2)

E. Y. Korchemskaya, M. S. Soskin, “Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin,” Opt. Eng. 33, 3456–3460 (1994).
[CrossRef]

J. D. Downie, “Real-time holographic image correction using bacteriorhodopsin,” Appl. Opt. 33, 4353–4357 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (2)

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant ASp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

1991 (2)

R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
[CrossRef] [PubMed]

C. Bräuchle, N. Hampp, D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[CrossRef]

1990 (3)

G. Váró, J. K. Lanyi, “Distortions in the photocycle of bacteriorhodopsin at moderate dehydration,” Biophys. J. 59, 313–322 (1990).
[CrossRef]

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Ann. Rev. Phys. Chem. 41, 683–733 (1990).
[CrossRef]

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

1985 (1)

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

Birge, R. R.

Blumer, R.

Braüchle, C.

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Bräuchle, C.

Brock, N. J.

Brown, M. S.

Burykin, N. M.

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Chen, Z.

DeBarber, P. A.

Downie, J. D.

Dukova, T. V.

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Gross, R. B.

Hampp, N.

T. Renner, N. Hampp, “Bacteriorhodopsin films for dynamic time average interferometry,” Opt. Commun. 96, 142–149 (1993).
[CrossRef]

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant ASp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

C. Bräuchle, N. Hampp, D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[CrossRef]

R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
[CrossRef] [PubMed]

Imam, H.

L. R. Lindvold, H. Imam, P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32–38 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

Korchemskaya, E. Y.

E. Y. Korchemskaya, M. S. Soskin, “Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin,” Opt. Eng. 33, 3456–3460 (1994).
[CrossRef]

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Photoinduced anisotropy, four-wave mixing and phase conjugation in materials based on bacteriorhodopsin,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. SPIE 1280, 308–313 (1990).

Lanyi, J. K.

G. Váró, J. K. Lanyi, “Distortions in the photocycle of bacteriorhodopsin at moderate dehydration,” Biophys. J. 59, 313–322 (1990).
[CrossRef]

Lindvold, L. R.

L. R. Lindvold, H. Imam, P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32–38 (1995).
[CrossRef]

Miller, A.

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

Millerd, J. E.

Oesterhelt, D.

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant ASp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[CrossRef] [PubMed]

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

C. Bräuchle, N. Hampp, D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[CrossRef]

R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
[CrossRef] [PubMed]

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

Popp, A.

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Ramanujam, P. S.

L. R. Lindvold, H. Imam, P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32–38 (1995).
[CrossRef]

Renner, T.

T. Renner, N. Hampp, “Bacteriorhodopsin films for dynamic time average interferometry,” Opt. Commun. 96, 142–149 (1993).
[CrossRef]

Song, Q. W.

Soskin, M. S.

E. Y. Korchemskaya, M. S. Soskin, “Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin,” Opt. Eng. 33, 3456–3460 (1994).
[CrossRef]

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Photoinduced anisotropy, four-wave mixing and phase conjugation in materials based on bacteriorhodopsin,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. SPIE 1280, 308–313 (1990).

Taranenko, V. B.

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Photoinduced anisotropy, four-wave mixing and phase conjugation in materials based on bacteriorhodopsin,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. SPIE 1280, 308–313 (1990).

Thoma, R.

Váró, G.

G. Váró, J. K. Lanyi, “Distortions in the photocycle of bacteriorhodopsin at moderate dehydration,” Biophys. J. 59, 313–322 (1990).
[CrossRef]

Vsevolodov, N. N.

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Ya Korchemskaya, E.

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Zhang, C.

Adv. Mater. (1)

C. Bräuchle, N. Hampp, D. Oesterhelt, “Optical applications of bacteriorhodopsin and its mutated variants,” Adv. Mater. 3, 420–428 (1991).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Ann. Rev. Phys. Chem. 41, 683–733 (1990).
[CrossRef]

Appl. Opt. (2)

Bell Sys. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

Biochim. Biophys. Acta (1)

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

Biophys. J. (1)

G. Váró, J. K. Lanyi, “Distortions in the photocycle of bacteriorhodopsin at moderate dehydration,” Biophys. J. 59, 313–322 (1990).
[CrossRef]

J. Phys. Chem. (1)

N. Hampp, A. Popp, C. Braüchle, D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wildtype BRWT and its variants BRD85E and BRD96N,” J. Phys. Chem. 96, 4679–4685 (1992).
[CrossRef]

Opt. Commun. (2)

N. M. Burykin, E. Ya Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in bio-chrom films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

T. Renner, N. Hampp, “Bacteriorhodopsin films for dynamic time average interferometry,” Opt. Commun. 96, 142–149 (1993).
[CrossRef]

Opt. Eng. (1)

E. Y. Korchemskaya, M. S. Soskin, “Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin,” Opt. Eng. 33, 3456–3460 (1994).
[CrossRef]

Opt. Lett. (4)

Opt. Rev. (1)

L. R. Lindvold, H. Imam, P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32–38 (1995).
[CrossRef]

Other (1)

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Photoinduced anisotropy, four-wave mixing and phase conjugation in materials based on bacteriorhodopsin,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. SPIE 1280, 308–313 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the BR photocycle. The numbers in parentheses indicate the peak wavelengths of the absorption spectra at the bR and intermediate states.

Fig. 2
Fig. 2

Schematic diagram of the optical setup for making holography measurements of BR films. Not shown is the blue laser beam at 442 nm from a HeCd laser used to erase the holograms. All beams were linearly polarized perpendicular to the plane of incidence at the BR film.

Fig. 3
Fig. 3

Diffraction efficiency plotted as a function of the writing time for dry WT film.

Fig. 4
Fig. 4

Diffraction efficiency plotted as a function of the writing time for hydrated WT film.

Fig. 5
Fig. 5

Maximum diffraction efficiency plotted as a function of the write intensity.

Fig. 6
Fig. 6

Hologram-writing sensitivity plotted as a function of the write intensity.

Fig. 7
Fig. 7

Grating-decay behavior for dry WT film. The experimental data (discrete points) and a three-exponential model fit (solid curve) are shown.

Fig. 8
Fig. 8

Grating-decay behavior for dry D96N/T46V film. The experimental data (discrete points) and a three-exponential model fit (solid curve) are shown.

Fig. 9
Fig. 9

Grating-decay behavior of dry D96N/T46V film, with and without (w/o) the application of a blue erasing beam.

Fig. 10
Fig. 10

Normalized diffraction efficiencies plotted as a function of the modulation depths of the intensity grating patterns.

Fig. 11
Fig. 11

Schematic diagram showing the definition of the film-normal angle βfilm.

Fig. 12
Fig. 12

Normalized diffraction efficiency plotted as a function of the film-normal angle βfilm for (a) the dry WT film and (b) the hydrated D96N film. Both the experimental data and the theoretical model results (solid curves) are shown.

Fig. 13
Fig. 13

Diffraction efficiency compensated for Fresnel-reflection loss variations plotted as a function of the grating frequency within BR films.

Tables (4)

Tables Icon

Table 1 Description of the Bacteriorhodopsin Films Studied

Tables Icon

Table 2 Measured Values at λ = 633 nm of the Background and Modulation Absorption Constants and Estimates of Hologram Refractive-Index Modulation

Tables Icon

Table 3 Effective Thermally Induced Grating-Decay Time Constants and Component Coefficients and Constants for the Three-Exponential-Decay Function Model

Tables Icon

Table 4 Effective Thermally Induced Decay-Time Constants τeff for Pump–Probe Transmission Behavior and Hologram Grating Diffraction Efficiencya

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = exp ( - 2 α 0 d cos θ r ) [ sin 2 ( π n 1 d λ cos θ r ) + sinh 2 ( α 1 d 2 cos θ r ) ] ,
α ( x ) = α 0 + α 1 cos ( K x ) n ( x ) = n 0 + n 1 cos ( K x ) ,
η ( t ) = η t = 0 [ c 1 exp ( - t / τ 1 ) + c 2 exp ( - t / τ 2 ) + c 3 exp ( - t / τ 3 ) ] ,
c 1 + c 2 + c 3 = 1.
τ eff = ( c 1 τ 1 + c 2 τ 2 + c 3 τ 3 ) ( c 1 + c 2 + c 3 ) .
m = 2 R S R 2 + S 2 ,

Metrics