Abstract

We demonstrate a method of simultaneous holographic recording and readout in photorefractive crystals that provides high write–read beam isolation and wide angular bandwidth. The method uses orthogonally polarized read and write beams and parallel tangent diffraction geometry near the equal curvature condition to provide spatially separable, orthogonally polarized diffracted output beams with high isolation and wide Bragg-matched angular bandwidth. The available angular bandwidth of this read–write technique is analyzed, simulated, and experimentally investigated. The measured angular bandwidth internal to the crystal is approximately 18° × 6° for our 45°-cut BaTiO3 crystal, yet the entire hologram still demonstrates high Bragg selectivity. In contrast, traditional nonparallel-tangent geometries yield angular apertures of the order of 1° × 4°.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
    [CrossRef]
  2. L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).
    [CrossRef]
  3. V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
    [CrossRef]
  4. P. Yeh, D. Zhang, C. Gu, “Parallel subtraction of Fourier power spectrum using holographic interferometry,” Opt. Lett. 17, 70–72 (1992).
    [CrossRef] [PubMed]
  5. A. E. Chiou, P. Yeh, “Parallel image subtraction using a phase-conjugate Michelson interferometer,” Opt. Lett. 11, 306–308 (1986).
    [CrossRef] [PubMed]
  6. D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
    [CrossRef]
  7. M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).
  8. Y. Shi, D. Psaltis, A. Marrakchi, J. A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983).
    [CrossRef] [PubMed]
  9. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  10. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
    [CrossRef]
  11. F. Vachss, P. Yeh, “Image-degradation mechanisms in photorefractive amplifiers,” J. Opt. Soc. Am. B 6, 1834–1844 (1989).
    [CrossRef]
  12. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).
  13. P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).
  14. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
    [CrossRef]
  15. J. Feinberg, “Imaging through a distorting medium with and without phase conjugation,” Appl. Phys. Lett. 42, 30–32 (1983).
    [CrossRef]
  16. K. Wagner, D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 26, 5061–5076 (1987).
    [CrossRef] [PubMed]
  17. Y. Owechko, “Cascaded-grating holography for artificial neural networks,” Appl. Opt. 32, 1380–1398 (1993).
    [CrossRef] [PubMed]
  18. I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
    [CrossRef]
  19. D. Psaltis, J. Yu, J. Hong, “Bias free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985).
    [CrossRef] [PubMed]
  20. J. Khoury, V. Ryan, C. Woods, M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991).
    [CrossRef] [PubMed]
  21. J. Khoury, V. Ryan, M. Cronin-Golomb, “Photorefractive frequency converter and phase-sensitive detector,” J. Opt. Soc. Am. B 10, 72–82 (1993).
    [CrossRef]
  22. R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photorefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, ed., Proc. SPIE 1217, 173–182 (1990).
  23. A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).
  24. R. M. Montgomery, M. R. Lange, “Photorefractive adaptive filter structure with 40-dB interference rejection,” Appl. Opt. 30, 2844–2849 (1991).
    [CrossRef] [PubMed]
  25. F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).
  26. B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).
  27. R. T. Weverka, K. Wagner, A. W. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996).
    [CrossRef] [PubMed]
  28. J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).
  29. J. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983).
    [CrossRef] [PubMed]
  30. A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.
  31. P. P. Ewald, “Crystal optics for visible light and x-rays,” Rev. Mod. Phys. 37, 46–56 (1965).
    [CrossRef]
  32. V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971).
    [CrossRef]
  33. R. R. Mcleod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation, (University of Colorado, Boulder, Colo., 1995).
  34. R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.
  35. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.
  36. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 14.
  37. J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1981), p. 31.
  38. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  39. G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
    [CrossRef]
  40. D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering,” IEEE Trans. Sonics Ultrason. SU-18209–214 (1971).
    [CrossRef]
  41. A. Korpel, R. Adler, P. Desmares, W. Watson, “A television display using acoustic deflection and modulation of coherent light,” Appl. Opt. 5, 1667–1675 (1966).
    [CrossRef] [PubMed]
  42. Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
  43. J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
    [CrossRef]
  44. J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
    [CrossRef]
  45. J. Xu, R. Stroud, Acousto-Optic Devices, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1992), Chap. 7, pp. 413–424.
  46. R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. SPIE 1562, 66–72 (1991).
  47. K.-H. Hellwege, ed., Ferro- and Antiferroelectric Substances, Vol. 3 of Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1975).
  48. M. P. Tarr, M. Cronin-Golomb, “Birefringent phase matching for nonvolatile readout of holographic memories,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 435–438.
  49. M. Cronin-Golomb, M. P. Tarr, “Applications of birefringent phase matching for photorefractive devices,” Opt. Lett. 20, 2252–2254 (1995).
    [CrossRef] [PubMed]
  50. K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994).
    [CrossRef]

1996 (1)

1995 (1)

1994 (1)

K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994).
[CrossRef]

1993 (2)

1992 (2)

P. Yeh, D. Zhang, C. Gu, “Parallel subtraction of Fourier power spectrum using holographic interferometry,” Opt. Lett. 17, 70–72 (1992).
[CrossRef] [PubMed]

I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
[CrossRef]

1991 (3)

F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).

R. M. Montgomery, M. R. Lange, “Photorefractive adaptive filter structure with 40-dB interference rejection,” Appl. Opt. 30, 2844–2849 (1991).
[CrossRef] [PubMed]

J. Khoury, V. Ryan, C. Woods, M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991).
[CrossRef] [PubMed]

1989 (3)

F. Vachss, P. Yeh, “Image-degradation mechanisms in photorefractive amplifiers,” J. Opt. Soc. Am. B 6, 1834–1844 (1989).
[CrossRef]

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[CrossRef]

1987 (1)

1986 (3)

A. E. Chiou, P. Yeh, “Parallel image subtraction using a phase-conjugate Michelson interferometer,” Opt. Lett. 11, 306–308 (1986).
[CrossRef] [PubMed]

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

1985 (1)

1983 (3)

1982 (1)

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

1981 (3)

L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

1980 (2)

J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

1979 (2)

V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

1974 (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1971 (2)

V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971).
[CrossRef]

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering,” IEEE Trans. Sonics Ultrason. SU-18209–214 (1971).
[CrossRef]

1970 (2)

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
[CrossRef]

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

1966 (1)

1965 (1)

P. P. Ewald, “Crystal optics for visible light and x-rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

Adler, R.

Aldrich, R. E.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Aldridge, N. B.

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Anderson, D. Z.

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

Anderson, L. K.

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
[CrossRef]

Aristov, V. V.

V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971).
[CrossRef]

Behrndt, M. E.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Bel’dyugin, I. M.

I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 14.

Buchan, W. R.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Chang, I. C.

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Chiou, A. E.

Coquin, G. A.

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
[CrossRef]

Cowley, J. M.

J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1981), p. 31.

Cronin-Golomb, M.

M. Cronin-Golomb, M. P. Tarr, “Applications of birefringent phase matching for photorefractive devices,” Opt. Lett. 20, 2252–2254 (1995).
[CrossRef] [PubMed]

J. Khoury, V. Ryan, M. Cronin-Golomb, “Photorefractive frequency converter and phase-sensitive detector,” J. Opt. Soc. Am. B 10, 72–82 (1993).
[CrossRef]

J. Khoury, V. Ryan, C. Woods, M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991).
[CrossRef] [PubMed]

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

M. P. Tarr, M. Cronin-Golomb, “Birefringent phase matching for nonvolatile readout of holographic memories,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 435–438.

Daniel, G. M.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Desmares, P.

Ellis, R. C.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Ewald, P. P.

P. P. Ewald, “Crystal optics for visible light and x-rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

Fainman, Y.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Feinberg, J.

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Feinberg, “Imaging through a distorting medium with and without phase conjugation,” Appl. Phys. Lett. 42, 30–32 (1983).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Fischer, B.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

Foote, P. D.

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Garvin, C.

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

Genthe, J. E.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Goff, J. R.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Griffin, J. P.

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
[CrossRef]

Gu, C.

Hall, T. J.

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Heiman, D.

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hong, J.

F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).

D. Psaltis, J. Yu, J. Hong, “Bias free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985).
[CrossRef] [PubMed]

J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).

Hou, S. L.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Hudson, S.

J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).

Huignard, J. P.

L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

Keefer, C.

F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).

Khomenko, A. V.

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Khoury, J.

Klancnik, E.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Korpel, A.

Kos, K. Y.

K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994).
[CrossRef]

Krasin’kova, M. V.

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Kukhtarev, N.

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

Lange, M. R.

Lee, S. H.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Levenston, A. G.

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Marakhonov, V. I.

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Markov, V.

V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

Marrakchi, A.

Mcleod, R. R.

R. R. Mcleod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation, (University of Colorado, Boulder, Colo., 1995).

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

Montgomery, R. M.

Odoulov, S.

V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

Oliver, D. S.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Owechko, Y.

Petrov, M. P.

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Pichon, L.

L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering,” IEEE Trans. Sonics Ultrason. SU-18209–214 (1971).
[CrossRef]

Psaltis, D.

Rhodes, J.

Ryan, V.

Sarto, A. W.

R. T. Weverka, K. Wagner, A. W. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996).
[CrossRef] [PubMed]

A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).

A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.

Shekhtman, V. S.

V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971).
[CrossRef]

Shi, Y.

Shylyagin, M. G.

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Siahmakoun, A.

K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994).
[CrossRef]

Soskin, M.

V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

Stearns, S. D.

B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).

Stroud, R.

J. Xu, R. Stroud, Acousto-Optic Devices, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1992), Chap. 7, pp. 413–424.

Sviridov, K. A.

I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
[CrossRef]

Tanguay, J. A. R.

Y. Shi, D. Psaltis, A. Marrakchi, J. A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Tarr, M. P.

M. Cronin-Golomb, M. P. Tarr, “Applications of birefringent phase matching for photorefractive devices,” Opt. Lett. 20, 2252–2254 (1995).
[CrossRef] [PubMed]

M. P. Tarr, M. Cronin-Golomb, “Birefringent phase matching for nonvolatile readout of holographic memories,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 435–438.

Vachss, F.

F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).

F. Vachss, P. Yeh, “Image-degradation mechanisms in photorefractive amplifiers,” J. Opt. Soc. Am. B 6, 1834–1844 (1989).
[CrossRef]

Vinetski, V.

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

Vohl, P.

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

Wagner, K.

R. T. Weverka, K. Wagner, A. W. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996).
[CrossRef] [PubMed]

K. Wagner, D. Psaltis, “Multilayer optical learning networks,” Appl. Opt. 26, 5061–5076 (1987).
[CrossRef] [PubMed]

A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).

R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. SPIE 1562, 66–72 (1991).

R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photorefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, ed., Proc. SPIE 1217, 173–182 (1990).

Wagner, K. H.

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.

Watson, W.

Weaver, S.

A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.

Weverka, R. T.

R. T. Weverka, K. Wagner, A. W. Sarto, “Photorefractive processing for large adaptive phased-arrays,” Appl. Opt. 35, 1344–1366 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).

A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.

R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photorefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, ed., Proc. SPIE 1217, 173–182 (1990).

R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. SPIE 1562, 66–72 (1991).

White, J.

J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

White, J. O.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

Widrow, B.

B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 14.

Woods, C.

Wu, K.

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

Xu, J.

J. Xu, R. Stroud, Acousto-Optic Devices, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1992), Chap. 7, pp. 413–424.

Yariv, A.

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.

Yeh, P.

Yu, J.

D. Psaltis, J. Yu, J. Hong, “Bias free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985).
[CrossRef] [PubMed]

J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).

Zhang, D.

Zolotarev, M. V.

I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (5)

J. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

D. S. Oliver, P. Vohl, R. E. Aldrich, M. E. Behrndt, W. R. Buchan, R. C. Ellis, J. E. Genthe, J. R. Goff, S. L. Hou, G. M. Daniel, “Image storage and optical readout in a ZnS device,” Appl. Phys. Lett. 17, 416–418 (1970).
[CrossRef]

B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, “Real-time phase conjugate window for one-way optical field imaging through a distortion,” Appl. Phys. Lett. 41, 141–143 (1982).
[CrossRef]

J. Feinberg, “Imaging through a distorting medium with and without phase conjugation,” Appl. Phys. Lett. 42, 30–32 (1983).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Defense Advanced Research Projects Agency, Rome Laboratories Proceedings (1)

F. Vachss, J. Hong, C. Keefer, “Adaptive signal processing using a photorefractive time integrating correlator,” Defense Advanced Research Projects Agency, Rome Laboratories Proceedings PSAA-91, 127–132 (1991).

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, V. Vinetski, “Holographic storage in electrooptic crystals II: beam-coupling-light amplification,” Ferroelectrics 22, 5061–5076 (1979).

IEEE J. Quantum Electron. (2)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484–519 (1989).
[CrossRef]

IEEE Trans. Sonics Ultrason. (2)

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acousto-optic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 34–40 (1970).
[CrossRef]

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering,” IEEE Trans. Sonics Ultrason. SU-18209–214 (1971).
[CrossRef]

J. Appl. Phys. (2)

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. Feinberg, D. Heiman, J. A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate: erratum,” J. Appl. Phys. 52, 537 (1981).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

L. Pichon, J. P. Huignard, “Dynamic joint-Fourier transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981).
[CrossRef]

Opt. Eng. (2)

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

K. Y. Kos, A. Siahmakoun, “Phase-conjugate shear interferometer with multiple wavelengths,” Opt. Eng. 33, 3349–3358 (1994).
[CrossRef]

Opt. Laser Technol. (1)

V. Markov, S. Odoulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95–99 (1979).
[CrossRef]

Opt. Lett. (4)

Proc. Inst. Electr. Eng. (1)

P. D. Foote, T. J. Hall, N. B. Aldridge, A. G. Levenston, “Photorefractive materials and their applications in optical image processing,” Proc. Inst. Electr. Eng. 133, 83–90 (1986).

Rev. Mod. Phys. (1)

P. P. Ewald, “Crystal optics for visible light and x-rays,” Rev. Mod. Phys. 37, 46–56 (1965).
[CrossRef]

Sov. J. Quantum Electron. (1)

I. M. Bel’dyugin, M. V. Zolotarev, K. A. Sviridov, “Optical neural computers based on photorefractive crystals,” Sov. J. Quantum Electron. 22, 384–399 (1992).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

M. P. Petrov, A. V. Khomenko, M. V. Krasin’kova, V. I. Marakhonov, M. G. Shylyagin, “The PRIZ image converter and its use in optical data processing systems,” Sov. Phys. Tech. Phys. 26, 816–821 (1981).

Sov. Phys. Usp. (1)

V. V. Aristov, V. S. Shekhtman, “Properties of three-dimensional holograms,” Sov. Phys. Usp. 14, 263–277 (1971).
[CrossRef]

Other (14)

R. R. Mcleod, “Spectral-domain analysis and design of three-dimensional optical switching and computing systems,” Ph.D. dissertation, (University of Colorado, Boulder, Colo., 1995).

R. T. Weverka, K. H. Wagner, R. R. McLeod, K. Wu, C. Garvin, Acousto-Optic Signal Processing: Theory and Implementation (Marcel Dekker, New York, 1995), Vol. 2, Chap. 15.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), Chap. 14.

J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1981), p. 31.

A. W. Sarto, R. T. Weverka, K. H. Wagner, S. Weaver, “Wide angular aperture holograms in photorefractive crystals using orthogonally polarized write and read beams,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 214–217.

J. Xu, R. Stroud, Acousto-Optic Devices, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1992), Chap. 7, pp. 413–424.

R. T. Weverka, K. Wagner, “Wide angular aperture acoustooptic Bragg cell,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. SPIE 1562, 66–72 (1991).

K.-H. Hellwege, ed., Ferro- and Antiferroelectric Substances, Vol. 3 of Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1975).

M. P. Tarr, M. Cronin-Golomb, “Birefringent phase matching for nonvolatile readout of holographic memories,” in Photorefractive Materials, Effects, and Devices, J. Feinberg, D. Anderson, eds., (National Institute of Standards and Technology, Gaithersburg, Md., 1995), pp. 435–438.

R. T. Weverka, K. Wagner, “Adaptive phased-array radar processing using photorefractive crystals,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, ed., Proc. SPIE 1217, 173–182 (1990).

A. W. Sarto, R. T. Weverka, K. Wagner, “Beam-steering and jammer-nulling photorefractive phased-array radar processor,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE 2155, 378–388 (1994).

B. Widrow, S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1985).

J. Hong, S. Hudson, J. Yu, D. Psaltis, “Photorefractive crystals as adaptive elements in acoustooptic filters,” in Optical Technology for Microwave Applications III, S. Yao, ed., Proc. SPIE 789, 136–144 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

2-D momentum space diagram of a negative uniaxial photorefractive crystal with a write reference plane wave and an angularly diverse object beam. The extraordinary-polarized readout beam produces an extraordinary-polarized diffracted spectra in a parallel tangents condition.

Fig. 2
Fig. 2

Read–write geometry in both 3-D and 2-D momentum space showing the grating vector K ¯ g written between k ¯ w 1 and k ¯ w 2 and the read out by k ¯ r . Bragg mismatch results in the momentum-mismatched component Δ K ¯ shown in the figure inset.

Fig. 3
Fig. 3

Uniaxial crystal 3-D momentum surfaces showing an ellipse formed between k e (θ) and the Ŷ axis. The ellipse is in a plane inclined at the angle θ from the C axis, and the angle ϕ moves the vector k ¯ along the elliptical path.

Fig. 4
Fig. 4

Extraordinary curvature as a function of the angles θ and ϕ normalized by a constant ordinary curvature, shown as a plane at unity, with an extraordinary curvature in the θ direction projected onto the front face. The parameters used are those for BaTiO3 at 514 nm, with n o = 2.469 and n e = 2.390. The hatched region between θ = {45°, 63°} and ϕ = {−9°, 9°} corresponds to when the calculations and experiments were done with a 45°-cut crystal, as presented in Section 5.

Fig. 5
Fig. 5

Ordinary momentum surface is translated by Δ R ¯ such that points of parallel tangency coincide. The point of intersection (or difference of ΔK ≈ π/L) between translated ordinary and extraordinary surfaces determines extraordinary plane-wave readout angle θ r . An ordinary plane-wave write-beam angle at θ w 1 can then be determined by the vector subtraction of Δ R ¯ .

Fig. 6
Fig. 6

Three calculation results of the normalized diffraction efficiency (in decibels) over two dimensions of the angular aperture: (b), near the exact Bragg-matched equal-curvature condition, is a broad region of high diffraction efficiency, thereby achieving a large angular aperture. (a) and (c) show the behavior that occurs as the read beam is detuned on either side of the optimum Bragg-matching angle.

Fig. 7
Fig. 7

Write-beam geometry showing the crystal and beam orientations between the angular spectra and a plane-wave write beam.

Fig. 8
Fig. 8

Experimental setup for an orthogonal polarization multiplexing experiment. The extraordinary beam is blocked during writing, and the ordinary write beams are blocked with shutters during extraordinary readout.

Fig. 9
Fig. 9

Experimental diffraction patterns on the left and the corresponding calculations of the holographic readout on the right. The two axes span the angular aperture of the angularly diverse diffracted beam. The sequence begins at slightly less than the optimum readout angle, passes through the optimum, and ends slightly past the optimum angle. The strong transmitted readout beam near 65° is blocked by a beam stop.

Fig. 10
Fig. 10

Experimental result for the case of reading out the same wide angular spectra of gratings far from both the equal-curvature and parallel-tangents conditions. The central angle of the write angular spectra and the plane-wave write-beam angle were at approximately 65° and 80°, respectively.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P ¯ ( x , z ) Δ ɛ ( x , z ) E ¯ ( x , z ) .
η = L 2 κ 2 sinc 2 ( Δ K ¯ Z L 2 π ) ,
κ = ( ω k B T c q 2 cos θ B ) e ^ 1 * ɛ _ _ r r _ _ _ K ^ _ g ɛ _ _ r e ^ 2 [ K g ( 1 + K g 2 / K D 2 ) ]
k x 2 n e 2 + k z 2 n o 2 = k o 2 = ( 2 π λ ) 2 ,
k x 2 n o 2 + k z 2 n o 2 = k o 2 = ( 2 π λ ) 2 ,
d k z d k x = - k x k z ( n o / n e ) 2 = - ( n o / n e ) 2 tan ( θ e ) ,
d k z d k x = - k x k z = - tan ( θ w 2 ) ,
θ e = tan - 1 [ ( n e / n o ) 2 tan ( θ w 2 ) ] .
ρ = f [ 1 + ( f ) 2 ] 3 / 2 ,
ρ ( θ ) ext = ( n o / n e 2 ) k o [ 1 + [ n e ( θ ) sin ( θ ) ] 2 ( n o 2 - n e 2 ) / n e 4 ] 3 / 2 ,
n e ( θ ) = [ cos 2 ( θ ) n o 2 + sin 2 ( θ ) n e 2 ] - 1 / 2 .
ρ ord = 1 / k o .
cos ( 2 θ eqcurv ) = n o 10 / 3 - n o 2 / 3 n e 8 / 3 - n e 10 / 3 n o 10 / 3 + n o 2 / 3 n e 8 / 3 + n e 10 / 3 .
ρ θ ( ϕ ) ext ϕ = [ n e ( θ ) / n e 2 ] k o { 1 + [ n e ( θ ) sin ( ϕ ) ] 2 [ n e 2 ( θ ) - n e 2 ] / n e 4 } 3 / 2 ,
cos ( 2 θ eqcurv , λ ) = n e 4 - β n o w 2 / 3 ( n o 2 / 3 n e 8 / 3 + n e 2 / 3 n o 8 / 3 ) + n o 4 ( n o 2 - n e 2 ) ( n e 2 - β n o w 2 / 3 n o 2 / 3 n e 2 / 3 + n o 2 ) ,
β = ( λ write λ read ) 2 / 3 ,
Δ R ¯ = R x x ^ + R z z ^ = [ k o sin ( θ w 2 ) - k e ( θ e ) sin ( θ e ) ] x ^ + [ k o cos ( θ w 2 ) - k e ( θ e ) cos ( θ e ) ] z ^ .
k ¯ e ( θ r ) - Δ R ¯ = k ¯ o ( θ w 1 ) .
Δ K Z = ( k ¯ e - k ¯ p ) · Z ^ .

Metrics