Abstract

A quantitative method for determining the depth of burn eschar would aid surgeons in determining whether to excise and subsequently graft a burn wound. We hypothesize that tissue viability could be assessed by an analysis of the spatial modulation of near-field laser speckle by flowing blood. A feasibility study of the technique was performed with two-layer tissue phantoms used to simulate a burn wound. A sheet of polytetrafluoroethylene (PTFE) was used to simulate nonperfused burn eschar, and tissue perfusion within deeper layers was represented by Brownian motion from a scattering solution. A low-power He–Ne laser was focused onto the target, and the resulting speckle image was captured with a CCD camera and stored on a computer for further processing. The diameter of the speckle pattern was found to be directly proportional to the thickness of the overlying layer. These data suggest that the thickness of PTFE can be determined to ±100-μm accuracy with 95% confidence and may be suitable for burn depth detection in vivo.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription