Abstract

Measurements of the extreme ultraviolet (EUV) reflectance of unoxidized aluminum films versus the angle of incidence in the interval of 82–77 nm, just below the aluminum plasma wavelength (83 nm), are presented. The continuum of helium was used as a radiation source for the first time in EUV reflectometry, to our knowledge. The surface roughness of substrates and samples was characterized by atomic force microscopy. The complex refractive index of unoxidized aluminum was obtained from reflectance measurements at each wavelength for the first time in this spectral range. Data on the refractive index, the dielectric constant, and the energy loss function in the above interval are shown together with our previous data obtained in an interval of 82.6–113.5 nm. Current results on the refractive index show a good match with the data in the literature calculated through the Kramers–Kronig analysis, the largest differences being in the imaginary part of the refractive index at the shortest wavelengths.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lyman, Assessment Study (European Space Agency, Paris, 1985), SCI(85), Vol. 4.
  2. G. Hass, W. R. Hunter, “Calculated reflectance of aluminum-overcoated iridium in the vacuum ultraviolet from 500 Å to 2000 Å,” Appl. Opt. 6, 2097–2100 (1967).
    [CrossRef] [PubMed]
  3. W. J. Choyke, W. D. Partlow, E. P. Supertzi, F. J. Venskytis, G. B. Brandt, “Silicon-carbide diffraction grating for the vacuum ultraviolet: feasibility,” Appl. Opt. 16, 2013–2014 (1977).
    [CrossRef] [PubMed]
  4. G. M. Blumenstock, R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994).
    [CrossRef] [PubMed]
  5. R. P. Madden, L. R. Canfield, G. Hass, “On the vacuum-ultraviolet reflectance of evaporated aluminum before and during oxidation,” J. Opt. Soc. Am. 53, 620–625 (1963).
    [CrossRef]
  6. H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
    [CrossRef]
  7. W. R. Hunter, “Optical constants of metals in the extreme ultraviolet. II. Optical constants of aluminum, magnesium, and indium at wavelengths shorter than their critical wavelengths,” J. Opt. Soc. Am. 54, 208–212 (1964).
    [CrossRef]
  8. R. C. Vehse, E. T. Arakawa, J. L. Stanford, “Normal-incidence reflectance of aluminum films in the wavelength region 800–2000 Å,” J. Opt. Soc. Am. 57, 551–552 (1967).
    [CrossRef] [PubMed]
  9. R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
    [CrossRef]
  10. A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).
  11. H. J. Hagemann, W. Gudat, C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (Deutsches Elektron-Synchrotron, Hamburg, 1974).
  12. R. La Villa, H. Mendlowitz, “Optical constants of aluminum in vacuum ultraviolet,” Phys. Rev. Lett. 9, 149–150 (1962).
    [CrossRef]
  13. C. J. Powell, “Analysis of optical- and inelastic-electron-scattering data. II. Application to Al,” J. Opt. Soc. Am. 60, 78–93 (1970).
    [CrossRef]
  14. P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
    [CrossRef]
  15. E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
    [CrossRef]
  16. J. I. Larruquert, J. A. Méndez, J. A. Aznárez, “Far UV reflectance measurements and optical constants of unoxidized aluminum films,” Appl. Opt. 34, 4892–4899 (1995).
    [CrossRef] [PubMed]
  17. J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
    [CrossRef]
  18. J. J. Hopfield, “New ultraviolet spectrum of helium,” Astrophys. J. 72, 133–145 (1930).
    [CrossRef]
  19. Y. Tanaka, A. S. Jursa, F. J. LeBlanc, “Continuous emission spectra of rare gases in the vacuum ultraviolet region. II. Neon and helium,” J. Opt. Soc. Am. 48, 304–308 (1958).
    [CrossRef]
  20. P. Croce, “Sur l’effet des couches très minces et des rugosités sur la réflexion, la transmission et la diffusion de la lumière par un dioptre,” J. Opt. 8, 127–139 (1977).
    [CrossRef]

1996 (1)

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

1995 (1)

1994 (1)

1980 (1)

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

1977 (2)

W. J. Choyke, W. D. Partlow, E. P. Supertzi, F. J. Venskytis, G. B. Brandt, “Silicon-carbide diffraction grating for the vacuum ultraviolet: feasibility,” Appl. Opt. 16, 2013–2014 (1977).
[CrossRef] [PubMed]

P. Croce, “Sur l’effet des couches très minces et des rugosités sur la réflexion, la transmission et la diffusion de la lumière par un dioptre,” J. Opt. 8, 127–139 (1977).
[CrossRef]

1976 (1)

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

1970 (1)

1969 (1)

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

1967 (2)

1966 (1)

R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
[CrossRef]

1964 (1)

1963 (2)

1962 (1)

R. La Villa, H. Mendlowitz, “Optical constants of aluminum in vacuum ultraviolet,” Phys. Rev. Lett. 9, 149–150 (1962).
[CrossRef]

1958 (1)

1930 (1)

J. J. Hopfield, “New ultraviolet spectrum of helium,” Astrophys. J. 72, 133–145 (1930).
[CrossRef]

Arakawa, E. T.

Aznárez, J. A.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

J. I. Larruquert, J. A. Méndez, J. A. Aznárez, “Far UV reflectance measurements and optical constants of unoxidized aluminum films,” Appl. Opt. 34, 4892–4899 (1995).
[CrossRef] [PubMed]

Blumenstock, G. M.

Brandt, G. B.

Canfield, L. R.

Choyke, W. J.

Croce, P.

P. Croce, “Sur l’effet des couches très minces et des rugosités sur la réflexion, la transmission et la diffusion de la lumière par un dioptre,” J. Opt. 8, 127–139 (1977).
[CrossRef]

Daude, A.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

Ditchburn, R. W.

R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
[CrossRef]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[CrossRef]

Fields, J. R.

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

Freeman, F. R. S.

R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
[CrossRef]

Freeman, G. H. C.

R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
[CrossRef]

Gibbons, P. C.

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

Gudat, W.

H. J. Hagemann, W. Gudat, C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (Deutsches Elektron-Synchrotron, Hamburg, 1974).

Hagemann, H. J.

H. J. Hagemann, W. Gudat, C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (Deutsches Elektron-Synchrotron, Hamburg, 1974).

Hass, G.

Hopfield, J. J.

J. J. Hopfield, “New ultraviolet spectrum of helium,” Astrophys. J. 72, 133–145 (1930).
[CrossRef]

Hunter, W. R.

Inokuti, M.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Jezequel, G.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

Jursa, A. S.

Keski-Kuha, R. A. M.

Kunz, C.

H. J. Hagemann, W. Gudat, C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (Deutsches Elektron-Synchrotron, Hamburg, 1974).

La Villa, R.

R. La Villa, H. Mendlowitz, “Optical constants of aluminum in vacuum ultraviolet,” Phys. Rev. Lett. 9, 149–150 (1962).
[CrossRef]

Larruquert, J. I.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

J. I. Larruquert, J. A. Méndez, J. A. Aznárez, “Far UV reflectance measurements and optical constants of unoxidized aluminum films,” Appl. Opt. 34, 4892–4899 (1995).
[CrossRef] [PubMed]

LeBlanc, F. J.

Madden, R. P.

Méndez, J. A.

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

J. I. Larruquert, J. A. Méndez, J. A. Aznárez, “Far UV reflectance measurements and optical constants of unoxidized aluminum films,” Appl. Opt. 34, 4892–4899 (1995).
[CrossRef] [PubMed]

Mendlowitz, H.

R. La Villa, H. Mendlowitz, “Optical constants of aluminum in vacuum ultraviolet,” Phys. Rev. Lett. 9, 149–150 (1962).
[CrossRef]

Partlow, W. D.

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[CrossRef]

Powell, C. J.

Ritsko, J. J.

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

Robin, S.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

Sasaki, T.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Savary, A.

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

Schnatterly, S. E.

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

Segall, B.

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[CrossRef]

Shiles, E.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Smith, D. Y.

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Stanford, J. L.

Supertzi, E. P.

Tanaka, Y.

Vehse, R. C.

Venskytis, F. J.

Appl. Opt. (4)

Astrophys. J. (1)

J. J. Hopfield, “New ultraviolet spectrum of helium,” Astrophys. J. 72, 133–145 (1930).
[CrossRef]

C. R. Acad. Sci. Paris B (1)

A. Daude, A. Savary, G. Jezequel, S. Robin, “Propriétés optiques de l’aluminium évaporeé en ultravide entre 500 et 1400 Å,” C. R. Acad. Sci. Paris B 269, 901–904 (1969).

J. Opt. (1)

P. Croce, “Sur l’effet des couches très minces et des rugosités sur la réflexion, la transmission et la diffusion de la lumière par un dioptre,” J. Opt. 8, 127–139 (1977).
[CrossRef]

J. Opt. Soc. Am. (5)

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
[CrossRef]

Phys. Rev. B (2)

P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, J. R. Fields, “Line shape of the plasma resonance in simple metals,” Phys. Rev. B 13, 2451–2460 (1976).
[CrossRef]

E. Shiles, T. Sasaki, M. Inokuti, D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers–Kronig analysis of optical data: applications to aluminum,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

R. La Villa, H. Mendlowitz, “Optical constants of aluminum in vacuum ultraviolet,” Phys. Rev. Lett. 9, 149–150 (1962).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

R. W. Ditchburn, F. R. S. Freeman, G. H. C. Freeman, “The optical constants of aluminium from 12 to 36 eV,” Proc. R. Soc. London Ser. A 294, 20–37 (1966).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Aznárez, J. I. Larruquert, J. A. Méndez, “Far ultraviolet reflectometer for optical constants determination of ultra high vacuum prepared thin films,” Rev. Sci. Instrum. 67, 497–502 (1996).
[CrossRef]

Other (2)

Lyman, Assessment Study (European Space Agency, Paris, 1985), SCI(85), Vol. 4.

H. J. Hagemann, W. Gudat, C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (Deutsches Elektron-Synchrotron, Hamburg, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the components of the experimental equipment: C, capillary; L, lamp; M, monochromator; G, diffraction grating; ENS, entrance slit; EXS, exit slit; MC, modulation chamber; CB, chopper blade; S, aperture stop; DRC, deposition and reflectometry chamber; C1, C2, C3, channel electron multipliers; MP, sample manipulator; SH, sample holder; P1, P2, P3, small conductance pipes.

Fig. 2
Fig. 2

Reflectance measurements versus the incidence angle of unoxidized aluminum films. Sample A (B), 84-nm (174-nm)-thick aluminum film. Pluses (circles), measurements in the horizontal (vertical) plane of incidence. Solid curve, reflectance of aluminum calculated with the refractive index obtained in the fit.

Fig. 3
Fig. 3

Symbols, refractive index n = nik of aluminum presented in this paper (77–82 nm) together with our previous determinations in Ref. 16 (82.6–113.5 nm). Solid curve, data in the literature obtained with the Kramers–Kronig analysis.

Fig. 4
Fig. 4

Symbols, semilogarithmic plot of the dielectric constant of aluminum presented in the current paper (77–82 nm) together with those obtained from our previous determinations (Ref. 16) of the refractive index (82.6–113.5 nm). Solid curve, data in the literature obtained with the Kramers–Kronig analysis.

Fig. 5
Fig. 5

Symbols, semilogarithmic plot of the energy loss function of aluminum presented in this paper (77–82 nm) together with those obtained from our previous determinations (Ref. 16) of the refractive index (82.6–113.5 nm). Solid curve, data in the literature obtained with the Kramers–Kronig analysis.

Fig. 6
Fig. 6

Symbols, calculated normal reflectance of a smooth and thick aluminum film obtained from reflectance measurements presented in this paper (77–82 nm) together with our previous determinations in Ref. 16 (82.6–113.5 nm). Solid curve, data in the literature obtained with the Kramers–Kronig analysis.

Tables (2)

Tables Icon

Table 1 Refractive Index (nik) of Superpolished BK7 Glass

Tables Icon

Table 2 Refractive Index (nik), Dielectric Constant (∊1i2), Energy Loss Function [Im(1/∊)], and Calculated Normal Reflectance R0 of Pure Aluminum Films Obtained from Reflectance Measurements versus Angle of Incidence

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

0.25 × ( R - 3 + R + 3 ) + 0.5 × ( R - 2 + R + 2 ) + 0.75 × ( R - 1 + R + 1 ) + R 0 2 × ( 0.25 + 0.5 + 0.75 ) + 1 ,

Metrics