Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

Not Accessible

Your library or personal account may give you access

Abstract

Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck’s radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures. The temperatures of the sample are found in a single calculation from the measured spectra independently of the response function of the instrument and the emissivity of the sample. The spectral emissivity of a sample can be measured if the instrument is calibrated against a blackbody source. Temperatures of blackbody sources are estimated with an uncertainty of 0.2–2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity

Andrew R. Korb, Peter Dybwad, Winthrop Wadsworth, and John W. Salisbury
Appl. Opt. 35(10) 1679-1692 (1996)

Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra

J. Schreiber, T. Blumenstock, and H. Fischer
Appl. Opt. 35(31) 6203-6209 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.