Abstract

A new measurement technique for the characterization of uniaxial as well as biaxial anisotropic surfaces and thin films is introduced. This technique is based on perpendicular-incidence photometric ellipsometry, in which a spectral-photometric dynamic ellipsometer with a rotating polarizer is used. This method is sensitive, contactless, nondestructive, and efficient for the estimation of anisotropic behavior. Furthermore, the spectroscopic measurement directly provides the anisotropy dispersion down to the UV wavelength range. Results on structurally anisotropic HfO2 coatings are presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Nieuwenhuizen, H. B. Haanstra, “Mikrofraktographie dünner Schichten,” Philips Tech. Rundsch. 27, 177–181 (1966).
  2. F. Horowitz, “Structure-induced optical anisotropy in thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1983).
  3. F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisostropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
    [CrossRef] [PubMed]
  4. H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
    [CrossRef]
  5. Q. H. Wu, I. Hodgkinson, “Transmission-mode perpendicular ellipsometry of anisotropic thin films,” J. Opt. (Paris) 25, 43–49 (1994).
    [CrossRef]
  6. R. M. A. Azzam, “Perpendicular-incidence photometric ellipsometry (PIPE) of surfaces with arbitary anisotropy,” J. Opt. (Paris) 12, 317–321 (1981).
    [CrossRef]

1996 (1)

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

1994 (1)

Q. H. Wu, I. Hodgkinson, “Transmission-mode perpendicular ellipsometry of anisotropic thin films,” J. Opt. (Paris) 25, 43–49 (1994).
[CrossRef]

1993 (1)

1981 (1)

R. M. A. Azzam, “Perpendicular-incidence photometric ellipsometry (PIPE) of surfaces with arbitary anisotropy,” J. Opt. (Paris) 12, 317–321 (1981).
[CrossRef]

1966 (1)

J. M. Nieuwenhuizen, H. B. Haanstra, “Mikrofraktographie dünner Schichten,” Philips Tech. Rundsch. 27, 177–181 (1966).

Azzam, R. M. A.

R. M. A. Azzam, “Perpendicular-incidence photometric ellipsometry (PIPE) of surfaces with arbitary anisotropy,” J. Opt. (Paris) 12, 317–321 (1981).
[CrossRef]

Endelema, D.

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisostropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
[CrossRef] [PubMed]

Flory, F.

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisostropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
[CrossRef] [PubMed]

Haanstra, H. B.

J. M. Nieuwenhuizen, H. B. Haanstra, “Mikrofraktographie dünner Schichten,” Philips Tech. Rundsch. 27, 177–181 (1966).

Hodgkinson, I.

Horowitz, F.

F. Horowitz, “Structure-induced optical anisotropy in thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1983).

Jänchen, H.

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Kaiser, N.

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Nieuwenhuizen, J. M.

J. M. Nieuwenhuizen, H. B. Haanstra, “Mikrofraktographie dünner Schichten,” Philips Tech. Rundsch. 27, 177–181 (1966).

Pelletier, E.

Wu, Q. H.

Q. H. Wu, I. Hodgkinson, “Transmission-mode perpendicular ellipsometry of anisotropic thin films,” J. Opt. (Paris) 25, 43–49 (1994).
[CrossRef]

Appl. Opt. (1)

J. Opt. (Paris) (2)

Q. H. Wu, I. Hodgkinson, “Transmission-mode perpendicular ellipsometry of anisotropic thin films,” J. Opt. (Paris) 25, 43–49 (1994).
[CrossRef]

R. M. A. Azzam, “Perpendicular-incidence photometric ellipsometry (PIPE) of surfaces with arbitary anisotropy,” J. Opt. (Paris) 12, 317–321 (1981).
[CrossRef]

Philips Tech. Rundsch. (1)

J. M. Nieuwenhuizen, H. B. Haanstra, “Mikrofraktographie dünner Schichten,” Philips Tech. Rundsch. 27, 177–181 (1966).

Pure Appl. Opt. (1)

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Other (1)

F. Horowitz, “Structure-induced optical anisotropy in thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microstructure model of biaxial anisotropic thin films.

Fig. 2
Fig. 2

Deposition geometry for the specific vapor distribution.

Fig. 3
Fig. 3

Schematic diagram of PIPE setup in the transmission mode.

Fig. 4
Fig. 4

Schematic diagram of PIPE setup in the reflection mode.

Fig. 5
Fig. 5

Calculated linear birefringence Δn over the wavelength range measured in the transmission mode.

Fig. 6
Fig. 6

Calculated linear birefringence Δn over the wavelength range measured in the reflection mode.

Tables (1)

Tables Icon

Table 1 Comparison of Calculated Linear Birefringence Δn for Different Measurement Techniques and Different-Vapor-Incidence Angles θ

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n = n 2 ,
n = ( n 1 2 n 3 2 n 3 2 cos 2 σ + n 1 2 sin 2 σ ) 1 / 2 .
tan σ = ½ tan θ .
cos Δ = β ( 1 - α 2 ) 1 / 2 .
δ s = Δ n 2 π d λ ,
tan δ p 2 = cos ϕ 0 ( sin ϕ 0 2 - n 0 2 n 1 2 ) 1 / 2 sin ϕ 0 2 ,
Δ = 2 δ p + 2 δ s + π .

Metrics