Abstract

A modular atmospheric correction algorithm is proposed that uses atmospheric and water contents models to predict the visible and near-infrared reflectances observed by a satellite over water. These predicted values are compared with the satellite reflectances at each pixel, and the model parameters changed iteratively with an error minimization algorithm. The default atmospheric model uses single-scattering theory with a correction for multiple scattering based on lookup tables. With this model we used parameters of the proportions of three tropospheric aerosol types. For the default water content model we need the parameters of the concentrations of chlorophyll, inorganic sediment, and gelbstoff. The diffuse attenuation and backscatter coefficients attributed to these constituents are calculated and used to derive the water-leaving reflectance. Products include water-leaving reflectance, concentrations of water constituents, and aerosol optical depth and type. We demonstrate the application of the method to sea-viewing wide field-of-view sensor by using model data.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  2. P. J. Curran, E. M. M. Novo, “The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review,” J. Coastal Res. 4 (3), 351–368 (1988).
  3. E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
    [CrossRef]
  4. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  5. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
    [CrossRef]
  6. S. C. Jain, J. R. Miller, “Subsurface water parameters: optimization approach to their determination from remotely sensed water color data,” Appl. Opt. 15, 886–890 (1976).
    [CrossRef] [PubMed]
  7. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  8. R. P. Bukata, J. E. Bruton, J. H. Jerome, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario. 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors,” Appl. Opt. 20, 1704–1714 (1981).
    [CrossRef] [PubMed]
  9. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
    [CrossRef]
  10. A. Morel, “In water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
    [CrossRef]
  11. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
    [CrossRef] [PubMed]
  12. R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
    [CrossRef]
  13. K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
    [CrossRef]
  14. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Colour for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
  15. R. J. Flowerdew, “Atmospheric correction for the visible and near-infrared channels of ATSR-2,” Ph.D. dissertation (Imperial College, London, 1995).
  16. K. Ding, H. R. Gordon, “Analysis of the influence of O2 A-band absorption on atmospheric correction of ocean-color imagery,” Appl. Opt. 34, 2068–2080 (1995).
    [CrossRef] [PubMed]
  17. K. Bignell, Imperial College, London, UK (personal communication, 1996).
  18. R. W. Austin, “Coastal zone color scanner radiometry,” in Ocean Optics VI, S. Q. Duntley, ed. (SPIE, Bellingham, Wash., 1980), pp. 170–177.
  19. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  20. L. Prieur, S. Sathyendranath, “An optical classification of coastal and ocean waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  21. W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).
  22. R. Doerffer, GKSS, Geesthocht, Germany (personal communication 1994).
  23. W. M. O. International Association for Meteorology and Atmospheric Physics Radiation Commission, “A preliminary cloudless standard atmosphere for radiation computation,” World Climate Program WCP-112, WMO/TD-#24 (World Meteorological Organisation International Association for Meteorology and Atmospheric Physics Radiation Commission, Geneva, 1986).
  24. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
    [CrossRef]
  25. M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Comput. J. 7, 155–162 (1964).
    [CrossRef]
  26. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  27. H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color sensors,” in Ocean Color: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, Brussels, Belgium, 1993), pp. 33–77.
    [CrossRef]
  28. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

1995

1994

1989

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

1988

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

P. J. Curran, E. M. M. Novo, “The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review,” J. Coastal Res. 4 (3), 351–368 (1988).

1983

1982

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

1981

L. Prieur, S. Sathyendranath, “An optical classification of coastal and ocean waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

R. P. Bukata, J. E. Bruton, J. H. Jerome, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario. 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors,” Appl. Opt. 20, 1704–1714 (1981).
[CrossRef] [PubMed]

1980

A. Morel, “In water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[CrossRef]

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1976

1975

1965

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

1964

M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Comput. J. 7, 155–162 (1964).
[CrossRef]

Austin, R. W.

R. W. Austin, “Coastal zone color scanner radiometry,” in Ocean Optics VI, S. Q. Duntley, ed. (SPIE, Bellingham, Wash., 1980), pp. 170–177.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

Bignell, K.

K. Bignell, Imperial College, London, UK (personal communication, 1996).

Broenkow, W. W.

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Brown, O. B.

Bruton, J. E.

Bukata, R. P.

Chen, F. C.

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

Chen, J. D.

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Curran, P. J.

E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
[CrossRef]

P. J. Curran, E. M. M. Novo, “The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review,” J. Coastal Res. 4 (3), 351–368 (1988).

Ding, K.

Doerffer, R.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

R. Doerffer, GKSS, Geesthocht, Germany (personal communication 1994).

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

Fischer, J.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

Flowerdew, R. J.

R. J. Flowerdew, “Atmospheric correction for the visible and near-infrared channels of ATSR-2,” Ph.D. dissertation (Imperial College, London, 1995).

Gordon, H. R.

K. Ding, H. R. Gordon, “Analysis of the influence of O2 A-band absorption on atmospheric correction of ocean-color imagery,” Appl. Opt. 34, 2068–2080 (1995).
[CrossRef] [PubMed]

H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Colour for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).

H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color sensors,” in Ocean Color: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, Brussels, Belgium, 1993), pp. 33–77.
[CrossRef]

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

Hansom, J. D.

E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
[CrossRef]

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

Jacobs, M. M.

Jain, S. C.

Jerome, J. H.

McClain, C. R.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Mezaache, A. L.

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

Miller, J. R.

Morel, A.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

A. Morel, “In water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Colour for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Novo, E. M. M.

E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
[CrossRef]

P. J. Curran, E. M. M. Novo, “The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review,” J. Coastal Res. 4 (3), 351–368 (1988).

Powell, M. J. D.

M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Comput. J. 7, 155–162 (1964).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and ocean waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and ocean waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

Tassan, S.

Wang, M. H.

Whiting, J. A.

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

Zwick, H. H.

Appl. Opt.

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

S. C. Jain, J. R. Miller, “Subsurface water parameters: optimization approach to their determination from remotely sensed water color data,” Appl. Opt. 15, 886–890 (1976).
[CrossRef] [PubMed]

R. P. Bukata, J. E. Bruton, J. H. Jerome, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario. 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors,” Appl. Opt. 20, 1704–1714 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
[CrossRef] [PubMed]

K. Ding, H. R. Gordon, “Analysis of the influence of O2 A-band absorption on atmospheric correction of ocean-color imagery,” Appl. Opt. 34, 2068–2080 (1995).
[CrossRef] [PubMed]

Boundary-Layer Meteorol.

A. Morel, “In water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[CrossRef]

Comput. J.

M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” Comput. J. 7, 155–162 (1964).
[CrossRef]

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Int. J. Remote Sensing

E. M. M. Novo, J. D. Hansom, P. J. Curran, “The effect of sediment type on the relationship between reflectance and suspended sediment concentration,” Int. J. Remote Sensing 10, 1283–1289 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[CrossRef]

J. Coastal Res.

P. J. Curran, E. M. M. Novo, “The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review,” J. Coastal Res. 4 (3), 351–368 (1988).

J. Geophys. Res.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean colour,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

Limnol. Oceanogr.

K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27, 500–509 (1982).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and ocean waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Other

W. W. Gregg, F. C. Chen, A. L. Mezaache, J. D. Chen, J. A. Whiting, “SeaWiFS Technical Report Series Vol. 9, The Simulated SeaWiFS Data Set, Version 1,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1993).

R. Doerffer, GKSS, Geesthocht, Germany (personal communication 1994).

W. M. O. International Association for Meteorology and Atmospheric Physics Radiation Commission, “A preliminary cloudless standard atmosphere for radiation computation,” World Climate Program WCP-112, WMO/TD-#24 (World Meteorological Organisation International Association for Meteorology and Atmospheric Physics Radiation Commission, Geneva, 1986).

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Colour for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).

R. J. Flowerdew, “Atmospheric correction for the visible and near-infrared channels of ATSR-2,” Ph.D. dissertation (Imperial College, London, 1995).

K. Bignell, Imperial College, London, UK (personal communication, 1996).

R. W. Austin, “Coastal zone color scanner radiometry,” in Ocean Optics VI, S. Q. Duntley, ed. (SPIE, Bellingham, Wash., 1980), pp. 170–177.

H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color sensors,” in Ocean Color: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, Brussels, Belgium, 1993), pp. 33–77.
[CrossRef]

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series Vol. 1, An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA, Washington, D.C., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relationship between radiance and wavelength for ten levels of sediment in milligrams per liter.

Fig. 2
Fig. 2

Algorithm flow chart.

Fig. 3
Fig. 3

Retrieval results for case 1 waters.

Fig. 4
Fig. 4

Retrieval results for sediment-laden case 2 waters.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R s s ( λ ) = R w ( μ 0 , μ , φ , λ ) Q ( μ 0 , μ , φ , λ ) n 2 ( λ ) π [ 1 ρ + ¯ ( λ ) ] [ 1 ρ ( μ , λ ) ] t ( μ 0 , λ ) + ρ ¯ ( λ ) R w ( μ 0 , μ , φ , λ ) Q ( μ 0 , μ , φ , λ ) n 2 ,
R s = R r + R a + R r a + R g + t ( μ ) R w ,
t ( μ ) = t mol ( μ ) t r ( μ ) t a ( μ ) = t mol ( μ ) exp τ r 2 μ exp ( 1 ϖ a F a ) τ a μ ,
R c = ( R s R r ) t mol ( μ ) R a s t mol ( μ ) + t r ( μ ) t a ( μ ) R w .
R a s = t mol * ( μ 0 μ ) ϖ a 4 [ P a ( Ψ 1 ) μ + μ 0 { 1 exp [ τ a ( 1 μ + 1 μ 0 ) ] } + P a ( Ψ 2 ) μ μ 0 ( ρ + ( μ ) exp ( 2 τ a μ ) × { 1 exp [ τ a ( 1 μ 1 μ 0 ) ] } ρ + ( μ 0 ) exp ( 2 τ a μ 0 ) × { 1 exp [ τ a ( 1 μ 1 μ 0 ) ] } ) ] ,
a + b τ a μ + c ( τ a μ ) 2 + d ( τ a μ ) 3 = 0 ,
b = t mol ( μ 0 ) ϖ a 4 μ 0 { P a ( Ψ 1 ) + P a ( Ψ 2 ) [ ρ + ( μ ) + ρ + ( μ 0 ) ] } t r ( μ ) R w ( 1 ϖ a F a ) , c = 1 2 ( t mol ( μ 0 ) ϖ a 4 μ 0 2 { P a ( Ψ 1 ) ( μ + μ 0 ) + P a ( Ψ 2 ) × [ ρ + ( μ ) ( 3 μ 0 + μ ) + ρ + ( μ 0 ) ( μ 0 + 3 μ ) ] } + t r ( μ ) R w ( 1 ϖ a F a ) 2 ) , d = 1 6 ( t mol ( μ 0 ) ϖ a 4 μ 0 3 { P a ( Ψ 1 ) ( μ + μ 0 ) 2 + P a ( Ψ 2 ) [ ρ + ( μ ) ( 7 μ 0 2 + 4 μ 0 μ + μ 2 ) + ρ + ( μ 0 ) ( μ 0 2 + 4 μ 0 μ + 7 μ 2 ) ] } t r ( μ ) R w ( 1 ϖ a F a ) 3 ) ,
R c = [ R a s + Δ R a ( R w , τ a ) ] t mol ( μ ) + t r ( μ ) t a ( μ ) R w .
ɛ ( λ i , λ j ) = τ a ( λ i ) ϖ a ( λ i ) p a ( θ , θ 0 , λ i ) τ a ( λ j ) ϖ a ( λ j ) p a ( θ , θ 0 , λ j ) ,

Metrics