Abstract

A solution of the electromagnetic scattering problem for confocal coated spheroids has been obtained by the method of separation of variables in a spheroidal coordinate system. The main features of the solution are (i) the incident, scattered, and internal radiation fields are divided into two parts: an axisymmetric part independent of the azimuthal angle φ and a nonaxisymmetric part that with integration over φ gives zero; the diffraction problems for each part are solved separately; (ii) the scalar potentials of the solution are chosen in a special way: Abraham's potentials (for the axisymmetric part) and a superposition of the potentials used for spheres and infinitely long cylinders (for the nonaxisymmetric part). Such a procedure has been applied to homogeneous spheroids [Differential Equations 19, 1765 (1983); Astrophys. Space Sci. 204, 19, (1993)] and allows us to solve the light scattering problem for confocal spheroids with an arbitrary refractive index, size, and shape of the core or mantle. Numerical tests are described in detail. The efficiency factors have been calculated for prolate and oblate spheroids with refractive indices of 1.5 + 0.0i, 1.5 + 0.05i for the core and refractive indices of 1.3 + 0.0i, 1.3 + 0.05i for the mantle. The effects of the core size and particle shape as well as those of absorption in the core or mantle are examined. It is found that the efficiency factors of the coated and homogeneous spheroids with the volume-averaged refractive index are similar to first maximum.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (77)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription