Abstract

Electrostatic stresses that can influence the observed signal with stress-optical constants form a contribution to the quadratic electro-optic (Kerr) effect measured at low frequencies. A new formula is proposed to correct for the influence of these stresses in order to obtain the true Kerr constant.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, New York, 1981).
    [Crossref]
  2. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 318–321.
  3. S. Haussühl, H.-J. Weber, “Zur Kompensation der elektrostatischen Kräfte bei der Messung elektrooptischer Effekte,” Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 145, 257–262 (1977).
  4. W. Kucharczyk, “Quadratic electro-optic effect and second-order strain derivatives of electronic susceptibility,” Physica B 176, 189–208 (1992).
    [Crossref]
  5. P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
    [Crossref]
  6. G. Kloos, “The correction of interferometric measurements of quadratic electrostriction for cross effects,” J. Phys. D 28, 939–944 (1995).
    [Crossref]
  7. L. Bohatý, “Dynamisches Verfahren zur Messung von elektro-striktiven und elektro-optischen Effekten. Beispiel: Tinalkonit Na2B4O5(OH)4 · 3H2O,” Z. Kristallogr. 158, 233–239 (1982).
    [Crossref]
  8. W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
    [Crossref]
  9. W. P. Mason, Crystal Physics of Interaction Processes (Academic, New York, 1966), p. 165.
  10. M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
    [Crossref]
  11. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
    [Crossref]
  12. P. Preu, S. Haussühl, “Quadratic electrostrictive effect in NaCl and KAl(SO)2 · 12H2O derived from stress dependence of dielectric constants,” Solid State Commun. 45, 619–623 (1983).
    [Crossref]
  13. E. Durand, Electrostatique (Masson, Paris, 1966), Vol. 3.
  14. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).
  15. M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1959).
  16. F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, London, 1973).
  17. K. Simonyi, Theoretische Elektrotechnik (Deutscher der Wissenschaften-Verlag, Berlin, 1977).
  18. H. J. Juretschke, “Simple derivation of the Maxwell stress tensor and electrostrictive effects in crystals,” Am. J. Phys. 45, 277–280 (1977).
    [Crossref]
  19. G. Kloos, “The dependence of electrostatic stresses at the surface of a dielectric on its orientation in an electric field,” J. Phys. D 28, 2424–2429 (1995).
    [Crossref]
  20. H. G. Booker, Energy in Electromagnetism (Peregrinus, Stevenage, U.K., 1982), Chap. 4.
  21. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).
  22. K.-H. Hellwege, ed., “Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals,” Vol. III/18 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1984), p. 366.
  23. H. Braul, C. A. Plint, “Elastic and photoelastic constants of NaCl, KBr, and LiF by Brillouin scattering,” Solid State Commun. 38, 227–230 (1981).
    [Crossref]
  24. P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
    [Crossref]
  25. K.-H. Hellwege, ed., “Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals,” Vol. III/11 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1986), p. 28.
  26. S. Haussühl, H. Hesse, “Quadratischer elektrooptischer Effekt (Kerr-Effekt) in Alkalihalogeniden vom NaCl-Typ,” Phys. Status Solidi 30, 209–214 (1968).
    [Crossref]
  27. S. Haussühl, G. Walda, “Messung des absoluten quadratischen elektrooptischen Effekts in Kristallen: Beispiele LiF und α-TlAl(SO4)2 · 12H2O,” Phys. Status Solidi A 5, K163–K165 (1971).
    [Crossref]

1995 (4)

P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
[Crossref]

G. Kloos, “The correction of interferometric measurements of quadratic electrostriction for cross effects,” J. Phys. D 28, 939–944 (1995).
[Crossref]

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

G. Kloos, “The dependence of electrostatic stresses at the surface of a dielectric on its orientation in an electric field,” J. Phys. D 28, 2424–2429 (1995).
[Crossref]

1994 (3)

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

1992 (1)

W. Kucharczyk, “Quadratic electro-optic effect and second-order strain derivatives of electronic susceptibility,” Physica B 176, 189–208 (1992).
[Crossref]

1983 (1)

P. Preu, S. Haussühl, “Quadratic electrostrictive effect in NaCl and KAl(SO)2 · 12H2O derived from stress dependence of dielectric constants,” Solid State Commun. 45, 619–623 (1983).
[Crossref]

1982 (1)

L. Bohatý, “Dynamisches Verfahren zur Messung von elektro-striktiven und elektro-optischen Effekten. Beispiel: Tinalkonit Na2B4O5(OH)4 · 3H2O,” Z. Kristallogr. 158, 233–239 (1982).
[Crossref]

1981 (1)

H. Braul, C. A. Plint, “Elastic and photoelastic constants of NaCl, KBr, and LiF by Brillouin scattering,” Solid State Commun. 38, 227–230 (1981).
[Crossref]

1977 (2)

S. Haussühl, H.-J. Weber, “Zur Kompensation der elektrostatischen Kräfte bei der Messung elektrooptischer Effekte,” Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 145, 257–262 (1977).

H. J. Juretschke, “Simple derivation of the Maxwell stress tensor and electrostrictive effects in crystals,” Am. J. Phys. 45, 277–280 (1977).
[Crossref]

1971 (1)

S. Haussühl, G. Walda, “Messung des absoluten quadratischen elektrooptischen Effekts in Kristallen: Beispiele LiF und α-TlAl(SO4)2 · 12H2O,” Phys. Status Solidi A 5, K163–K165 (1971).
[Crossref]

1968 (1)

S. Haussühl, H. Hesse, “Quadratischer elektrooptischer Effekt (Kerr-Effekt) in Alkalihalogeniden vom NaCl-Typ,” Phys. Status Solidi 30, 209–214 (1968).
[Crossref]

Abraham, M.

M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1959).

Becker, R.

M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1959).

Bernasconi, P.

P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
[Crossref]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Bohatý, L.

L. Bohatý, “Dynamisches Verfahren zur Messung von elektro-striktiven und elektro-optischen Effekten. Beispiel: Tinalkonit Na2B4O5(OH)4 · 3H2O,” Z. Kristallogr. 158, 233–239 (1982).
[Crossref]

Booker, H. G.

H. G. Booker, Energy in Electromagnetism (Peregrinus, Stevenage, U.K., 1982), Chap. 4.

Braul, H.

H. Braul, C. A. Plint, “Elastic and photoelastic constants of NaCl, KBr, and LiF by Brillouin scattering,” Solid State Commun. 38, 227–230 (1981).
[Crossref]

Das, B. N.

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

Duelli, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Durand, E.

E. Durand, Electrostatique (Masson, Paris, 1966), Vol. 3.

Fontana, M. D.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

Garrett, M. H.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Gon, H. B.

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

Graham, C.

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

Gunning, M. J.

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

Günter, P.

P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
[Crossref]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Haussühl, S.

P. Preu, S. Haussühl, “Quadratic electrostrictive effect in NaCl and KAl(SO)2 · 12H2O derived from stress dependence of dielectric constants,” Solid State Commun. 45, 619–623 (1983).
[Crossref]

S. Haussühl, H.-J. Weber, “Zur Kompensation der elektrostatischen Kräfte bei der Messung elektrooptischer Effekte,” Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 145, 257–262 (1977).

S. Haussühl, G. Walda, “Messung des absoluten quadratischen elektrooptischen Effekts in Kristallen: Beispiele LiF und α-TlAl(SO4)2 · 12H2O,” Phys. Status Solidi A 5, K163–K165 (1971).
[Crossref]

S. Haussühl, H. Hesse, “Quadratischer elektrooptischer Effekt (Kerr-Effekt) in Alkalihalogeniden vom NaCl-Typ,” Phys. Status Solidi 30, 209–214 (1968).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 318–321.

Hesse, H.

S. Haussühl, H. Hesse, “Quadratischer elektrooptischer Effekt (Kerr-Effekt) in Alkalihalogeniden vom NaCl-Typ,” Phys. Status Solidi 30, 209–214 (1968).
[Crossref]

Jannot, B.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

Jullien, P.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

Juretschke, H. J.

H. J. Juretschke, “Simple derivation of the Maxwell stress tensor and electrostrictive effects in crystals,” Am. J. Phys. 45, 277–280 (1977).
[Crossref]

Kloos, G.

G. Kloos, “The dependence of electrostatic stresses at the surface of a dielectric on its orientation in an electric field,” J. Phys. D 28, 2424–2429 (1995).
[Crossref]

G. Kloos, “The correction of interferometric measurements of quadratic electrostriction for cross effects,” J. Phys. D 28, 939–944 (1995).
[Crossref]

Kucharczyk, W.

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

W. Kucharczyk, “Quadratic electro-optic effect and second-order strain derivatives of electronic susceptibility,” Physica B 176, 189–208 (1992).
[Crossref]

Laabidi, K.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

Maglione, M.

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

Mason, W. P.

W. P. Mason, Crystal Physics of Interaction Processes (Academic, New York, 1966), p. 165.

Narasimhamurty, T. S.

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, New York, 1981).
[Crossref]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).

Plint, C. A.

H. Braul, C. A. Plint, “Elastic and photoelastic constants of NaCl, KBr, and LiF by Brillouin scattering,” Solid State Commun. 38, 227–230 (1981).
[Crossref]

Preu, P.

P. Preu, S. Haussühl, “Quadratic electrostrictive effect in NaCl and KAl(SO)2 · 12H2O derived from stress dependence of dielectric constants,” Solid State Commun. 45, 619–623 (1983).
[Crossref]

Raab, R. E.

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

Rao, K. V.

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

Robinson, F. N. H.

F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, London, 1973).

Rytz, D.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Schlesser, R.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Selvarajan, P.

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

Simonyi, K.

K. Simonyi, Theoretische Elektrotechnik (Deutscher der Wissenschaften-Verlag, Berlin, 1977).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).

Walda, G.

S. Haussühl, G. Walda, “Messung des absoluten quadratischen elektrooptischen Effekts in Kristallen: Beispiele LiF und α-TlAl(SO4)2 · 12H2O,” Phys. Status Solidi A 5, K163–K165 (1971).
[Crossref]

Weber, H.-J.

S. Haussühl, H.-J. Weber, “Zur Kompensation der elektrostatischen Kräfte bei der Messung elektrooptischer Effekte,” Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 145, 257–262 (1977).

Wu, X.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Zgonik, M.

P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
[Crossref]

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Zhu, Y.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Am. J. Phys. (1)

H. J. Juretschke, “Simple derivation of the Maxwell stress tensor and electrostrictive effects in crystals,” Am. J. Phys. 45, 277–280 (1977).
[Crossref]

J. Appl. Phys. (1)

P. Bernasconi, M. Zgonik, P. Günter, “Temperature dependence and dispersion of electro-optic and elasto-optic effects in perovskite crystals,” J. Appl. Phys. 78, 2651–2658 (1995).
[Crossref]

J. Mater. Sci. (1)

P. Selvarajan, B. N. Das, H. B. Gon, K. V. Rao, “Dielectric properties of quenched and laser-excited or field-treated LiF single crystals irradiated with x-rays,” J. Mater. Sci. 29, 4061–4064 (1994).
[Crossref]

J. Phys. D (2)

G. Kloos, “The correction of interferometric measurements of quadratic electrostriction for cross effects,” J. Phys. D 28, 939–944 (1995).
[Crossref]

G. Kloos, “The dependence of electrostatic stresses at the surface of a dielectric on its orientation in an electric field,” J. Phys. D 28, 2424–2429 (1995).
[Crossref]

Phys. Rev. B (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[Crossref]

Phys. Status Solidi (1)

S. Haussühl, H. Hesse, “Quadratischer elektrooptischer Effekt (Kerr-Effekt) in Alkalihalogeniden vom NaCl-Typ,” Phys. Status Solidi 30, 209–214 (1968).
[Crossref]

Phys. Status Solidi A (1)

S. Haussühl, G. Walda, “Messung des absoluten quadratischen elektrooptischen Effekts in Kristallen: Beispiele LiF und α-TlAl(SO4)2 · 12H2O,” Phys. Status Solidi A 5, K163–K165 (1971).
[Crossref]

Physica B (2)

W. Kucharczyk, M. J. Gunning, R. E. Raab, C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
[Crossref]

W. Kucharczyk, “Quadratic electro-optic effect and second-order strain derivatives of electronic susceptibility,” Physica B 176, 189–208 (1992).
[Crossref]

Solid State Commun. (3)

P. Preu, S. Haussühl, “Quadratic electrostrictive effect in NaCl and KAl(SO)2 · 12H2O derived from stress dependence of dielectric constants,” Solid State Commun. 45, 619–623 (1983).
[Crossref]

M. D. Fontana, K. Laabidi, B. Jannot, M. Maglione, P. Jullien, “Relationship between electro-optic, vibrational and dielectric properties in BaTiO3,” Solid State Commun. 92, 827–830 (1994).
[Crossref]

H. Braul, C. A. Plint, “Elastic and photoelastic constants of NaCl, KBr, and LiF by Brillouin scattering,” Solid State Commun. 38, 227–230 (1981).
[Crossref]

Z. Kristallogr. (1)

L. Bohatý, “Dynamisches Verfahren zur Messung von elektro-striktiven und elektro-optischen Effekten. Beispiel: Tinalkonit Na2B4O5(OH)4 · 3H2O,” Z. Kristallogr. 158, 233–239 (1982).
[Crossref]

Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. (1)

S. Haussühl, H.-J. Weber, “Zur Kompensation der elektrostatischen Kräfte bei der Messung elektrooptischer Effekte,” Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 145, 257–262 (1977).

Other (12)

T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, New York, 1981).
[Crossref]

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 318–321.

W. P. Mason, Crystal Physics of Interaction Processes (Academic, New York, 1966), p. 165.

E. Durand, Electrostatique (Masson, Paris, 1966), Vol. 3.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).

M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1959).

F. N. H. Robinson, Macroscopic Electromagnetism (Pergamon, London, 1973).

K. Simonyi, Theoretische Elektrotechnik (Deutscher der Wissenschaften-Verlag, Berlin, 1977).

H. G. Booker, Energy in Electromagnetism (Peregrinus, Stevenage, U.K., 1982), Chap. 4.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).

K.-H. Hellwege, ed., “Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals,” Vol. III/18 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1984), p. 366.

K.-H. Hellwege, ed., “Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals,” Vol. III/11 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1986), p. 28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Δ ( 1 n i j 2 ) = k = 1 3 l = 1 3 g ijkl E k E l .
Δ ( 1 n i j 2 ) = k = 1 3 l = 1 3 g ijkl observed E k E l = k = 1 3 l = 1 3 g ijkl ɛ E k E l + k = 1 3 l = 1 3 m = 1 3 n = 1 3 p ijmn E γ mnkl E k E l k = 1 3 l = 1 3 q ijkl E T k l ,
Δ ( 1 n i j 2 ) MS = k = 1 3 l = 1 3 q ijkl E T k l = k = 1 3 l = 1 3 g ijkl MS E k E l ,
g ijkl observed = d 2 d E k d E l 0 i j .
i j = i j [ S ( E k ) , ɛ m n ( E k ) , E k ] .
g ijkl observed = ( 2 E k E l 0 i j ) ɛ , S + ( ɛ m n 0 i j ) S ( ɛ m n E k E l ) S .
g ijkl observed = g ijkl ɛ + m = 1 3 n = 1 3 p ijmn E γ mnkl observed .
γ ijkl observed = γ ijkl + γ ijkl MS .
g ijkl MS : = m = 1 3 n = 1 3 p ijmn E γ mnkl MS
γ klmn MS = o = 1 3 p = 1 3 s klop E f opmn MS ,
Δ ( 1 n i j 2 ) MS = k = 1 3 l = 1 3 p ijkl E m = 1 3 n = 1 3 γ klmn MS E m E n = k = 1 3 l = 1 3 p ijkl E o = 1 3 p = 1 3 s klop E m = 1 3 n = 1 3 f opmn MS E m E n .
p ijkl E = r = 1 3 s = 1 3 q ijrs E c rskl E
k = 1 3 l = 1 3 c rskl E s klop E = δ r o δ s p
Δ ( 1 n i j 2 ) MS = o = 1 3 p = 1 3 q ijop E m = 1 3 n = 1 3 f opmn MS E m E n .
Δ ( 1 n i j 2 ) MS = o = 1 3 p = 1 3 q ijop E T o p .
T i j I = E i D j ½ δ i j k = 1 3 E k D k = E i k = 1 3 j k I E k ½ δ i j m = 1 3 k = 1 3 m k I E k E m .
g ijkl MS , I = m = 1 3 q ijlm E , I m k I + ½ k l I n = 1 3 q ijnn E , I .
T i j = T i j I T i j II .
T i j vac = 0 ( E i E j ½ δ i j k = 1 3 E k 2 ) .
T 11 I = ½ 11 I E 1 2 ,
T i j I ( 0 , 0 , E 3 ) = [ 0 0 0 0 0 0 13 I E 3 2 23 I E 3 2 33 I E 3 2 ] ½ 33 I E 3 2 [ 1 0 0 0 1 0 0 0 1 ] .
g 1111 MS = ½ 11 ( q 1111 E 2 q 1122 E ) .
g 1122 MS = + ½ 11 ( 11 rel 1 ) q 1111 E .
q 1111 E = s 1111 E p 1111 E + 2 s 1122 E p 1122 E = 0.55 × 10 12 m 2 / N , q 1122 E = s 1111 E p 1122 E + s 1122 E ( p 1111 E + p 1122 E ) = + 1.03 × 10 12 m 2 / N .

Metrics