Abstract

Hollow glass waveguides are used to deliver free electron laser (FEL) energy for applications in medicine and laser surgery. The hollow guides, optimized for the delivery of 6.45-μm FEL radiation, exhibited losses for the 1000-μm bore as low as 0.39 dB/m when the guide was straight and 1.75 dB/m when bent to a radius of 25 cm. Hollow glass guides are flexible, and their broadband capability provides an ideal fiber optic for the tunable FEL.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brau, Free-Electron Lasers (Academic, Boston, 1990).
  2. J. P. Bell, D. R. Ponikvar, “The medical free electron laser,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 278–285 (1994).
  3. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  4. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  5. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  6. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  7. C. Brau, “Vanderbilt free-electron laser center,” Nucl. Instrum. Methods A318, 38–41 (1994).
  8. G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
    [CrossRef]
  9. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1980).
    [CrossRef]

1995 (1)

1994 (3)

C. Brau, “Vanderbilt free-electron laser center,” Nucl. Instrum. Methods A318, 38–41 (1994).

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
[CrossRef] [PubMed]

1989 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1980 (1)

Abel, T.

Bell, J. P.

J. P. Bell, D. R. Ponikvar, “The medical free electron laser,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 278–285 (1994).

Brau, C.

C. Brau, “Vanderbilt free-electron laser center,” Nucl. Instrum. Methods A318, 38–41 (1994).

Brau, C. A.

C. A. Brau, Free-Electron Lasers (Academic, Boston, 1990).

Copeland, M.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Davidson, J.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Edwards, G.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Harrington, J. A.

Hirsch, J.

Hongo, A.

Johnson, B.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Karasawa, S.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Logan, R.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Maclunas, R.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Matsuura, Y.

Mendenhall, M.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Miyagi, M.

O'day, D.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Ossoff, R.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Ponikvar, D. R.

J. P. Bell, D. R. Ponikvar, “The medical free electron laser,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 278–285 (1994).

Renisch, L.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Saito, M.

Tribble, J.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Werkhaven, J.

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Appl. Opt. (2)

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (London) (1)

G. Edwards, R. Logan, M. Copeland, L. Renisch, J. Davidson, B. Johnson, R. Maclunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O'day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature (London) 371, 416–419 (1994).
[CrossRef]

Nucl. Instrum. Methods (1)

C. Brau, “Vanderbilt free-electron laser center,” Nucl. Instrum. Methods A318, 38–41 (1994).

Opt. Lett. (1)

Other (2)

C. A. Brau, Free-Electron Lasers (Academic, Boston, 1990).

J. P. Bell, D. R. Ponikvar, “The medical free electron laser,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 278–285 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral loss for hollow glass waveguides designed for two different wavelengths.

Fig. 2
Fig. 2

Measured loss for 6.45-μm FEL light compared with a theoretical loss.

Fig. 3
Fig. 3

Measured bending losses for hollow glass waveguides at 6.45 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = λ 2 π n d 2 1 tan 1 [ n d ( n d 2 1 ) 1 / 4 ]

Metrics