Abstract

A liquid-nitrogen-cooled CO laser and an intracavity resonant photoacoustic cell are employed to monitor trace gases. The setup was designed to monitor trace gas emissions of biological samples on line. The arrangement offers the possibility to measure gases at the 109 by volume (ppbv) level (e.g., CH4, H2O) and to detect rapid changes in trace gas emission. A detection limit of 1 ppbv for CH4 in N2 equivalent to a minimal detectable absorption of 3 × 10−9 cm−1 can be achieved. Because of the kinetic cooling effect we lowered the detection limit for CH4 in air is decreased to 10 ppbv. We used the instrument in a first application to measure the CH4 and H2O emission of individual cockroaches and scarab beetles. These emissions could be correlated with CO2 emissions that were recorded simultaneously with an infrared gas analyzer. Characteristic breathing patterns of the insects could be observed; unexpectedly methane was also found to be released.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  2. L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
    [CrossRef]
  3. M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).
  4. T. H. Vansteenkiste, F. R. Faxvog, D. M. Roessler, “Photoacoustic measurement of carbon monoxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981).
    [CrossRef]
  5. S. B. Tilden, M. B. Denton, “A comparison of data reduction techniques for line-excited optoacoustic analysis of mixtures,” Appl. Spectrosc. 39, 1017–1022 (1985).
    [CrossRef]
  6. T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
    [CrossRef]
  7. T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
    [CrossRef]
  8. B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
    [CrossRef]
  9. W. Urban, “Infrared lasers for spectroscopy,” in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds. (Kluwer, Deventer, The Netherlands, 1988), pp. 9–42.
    [CrossRef]
  10. S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
    [CrossRef]
  11. F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.
  12. J. E. Rogers, W. B. Whitman, Microbial Production and Consumption of Greenhouse Gases (American Society for Microbiology, Washington, D.C., 1991), pp. 7–38.
  13. J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994).
    [CrossRef] [PubMed]
  14. P. Kestler, “Respiration and respiratory water loss,” in Environmental Physiology and Biochemistry in Insects, K. H. Hoffmann, ed. (Springer-Verlag, Berlin, 1985), pp. 137–183.
  15. M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982).
    [CrossRef]
  16. J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).
  17. E. B. Edney, Water Balance in Land Arthropods (Springer-Verlag, New York, 1977).
    [CrossRef]
  18. C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
    [CrossRef]
  19. J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys. 42, 2719–2730 (1972).
    [CrossRef]
  20. G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981).
    [CrossRef]
  21. F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases; detection of C2H4 below the ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
    [CrossRef]
  22. F. G. C. Bijnen, “Refined CO laser photoacoustic trace gas detection; observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1995).
  23. F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
    [CrossRef]
  24. F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972).
    [CrossRef]
  25. R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacous-tic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
    [CrossRef] [PubMed]
  26. E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981).
    [CrossRef]
  27. J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977).
  28. C. M. Harris, ed., in Handbook of Noise Control (McGraw-Hill, New York, 1957), Chap. 21.
  29. A. Krogh, “Studien über Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen,” Pfluegers Arch. Gesamte Physiol. Manschen Tiere 179, 95–112 (1920).
    [CrossRef]
  30. E. H. Hazelhoff, “Regeling der ademhaling bij insecten en spinnen,” Ph.D. dissertation (State University Utrecht, Utrecht, The Netherlands, 1926).
  31. A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
    [CrossRef]
  32. R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966).
    [CrossRef] [PubMed]

1996 (1)

F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
[CrossRef]

1994 (2)

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994).
[CrossRef] [PubMed]

1993 (1)

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

1991 (1)

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

1990 (4)

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

R. A. Rooth, A. J. L. Verhage, L. W. Wouters, “Photoacous-tic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29, 3643–3653 (1990).
[CrossRef] [PubMed]

F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases; detection of C2H4 below the ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
[CrossRef]

1985 (1)

1982 (1)

M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982).
[CrossRef]

1981 (4)

T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
[CrossRef]

E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981).
[CrossRef]

G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981).
[CrossRef]

T. H. Vansteenkiste, F. R. Faxvog, D. M. Roessler, “Photoacoustic measurement of carbon monoxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981).
[CrossRef]

1972 (2)

F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972).
[CrossRef]

J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys. 42, 2719–2730 (1972).
[CrossRef]

1971 (1)

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[CrossRef]

1968 (1)

C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
[CrossRef]

1966 (1)

R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966).
[CrossRef] [PubMed]

1957 (1)

A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
[CrossRef]

1920 (1)

A. Krogh, “Studien über Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen,” Pfluegers Arch. Gesamte Physiol. Manschen Tiere 179, 95–112 (1920).
[CrossRef]

Avramides, E.

E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981).
[CrossRef]

Bernegger, S.

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Bicanic, D. D.

Bijnen, F. G. C.

F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
[CrossRef]

F. G. C. Bijnen, “Refined CO laser photoacoustic trace gas detection; observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1995).

F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.

Brugman, T.

F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.

Denton, M. B.

Duncan, F. D.

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

Edney, E. B.

E. B. Edney, Water Balance in Land Arthropods (Springer-Verlag, New York, 1977).
[CrossRef]

Faxvog, F. R.

Fiedler, M.

M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).

Garrigan, D.

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

Gebhardt, F. G.

F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972).
[CrossRef]

George, T.

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

Golz, C.

M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).

Hackstein, J. H. P.

J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994).
[CrossRef] [PubMed]

Hadley, N. F.

M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982).
[CrossRef]

Harren, F. J. M.

F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
[CrossRef]

F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases; detection of C2H4 below the ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
[CrossRef]

F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.

Hazelhoff, E. H.

E. H. Hazelhoff, “Regeling der ademhaling bij insecten en spinnen,” Ph.D. dissertation (State University Utrecht, Utrecht, The Netherlands, 1926).

Hunter, T. F.

E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981).
[CrossRef]

Johnson, R. A.

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

Kestler, P.

P. Kestler, “Respiration and respiratory water loss,” in Environmental Physiology and Biochemistry in Insects, K. H. Hoffmann, ed. (Springer-Verlag, Berlin, 1985), pp. 137–183.

Kreuzer, L. B.

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[CrossRef]

Krogh, A.

A. Krogh, “Studien über Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen,” Pfluegers Arch. Gesamte Physiol. Manschen Tiere 179, 95–112 (1920).
[CrossRef]

Kuchlein, J.

A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
[CrossRef]

Lambert, J. D.

J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977).

Levy, R. I.

R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966).
[CrossRef] [PubMed]

Lighton, J. R. B.

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

Lin, T. X.

T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
[CrossRef]

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Murray, G. A.

G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981).
[CrossRef]

Nelles, B.

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

Parser, W. J.

A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
[CrossRef]

Platt, U.

M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).

Punt, A.

A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
[CrossRef]

Quinlan, M. C.

M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982).
[CrossRef]

Rehm, R. G.

C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
[CrossRef]

Reuss, J.

F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
[CrossRef]

F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases; detection of C2H4 below the ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
[CrossRef]

F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.

Rich, J. W.

J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys. 42, 2719–2730 (1972).
[CrossRef]

C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
[CrossRef]

Roessler, D. M.

Rogers, J. E.

J. E. Rogers, W. B. Whitman, Microbial Production and Consumption of Greenhouse Gases (American Society for Microbiology, Washington, D.C., 1991), pp. 7–38.

Rohrbeck, W.

T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
[CrossRef]

Rooth, R. A.

Saupe, S.

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

Schneider, M.

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

Schneiderman, H. A.

R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966).
[CrossRef] [PubMed]

Sigrist, M. W.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Smith, A. L. S.

G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981).
[CrossRef]

Smith, D. C.

F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972).
[CrossRef]

Stumm, C. K.

J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994).
[CrossRef] [PubMed]

Tilden, S. B.

Treanor, C. E.

C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
[CrossRef]

Urban, W.

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
[CrossRef]

W. Urban, “Infrared lasers for spectroscopy,” in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds. (Kluwer, Deventer, The Netherlands, 1988), pp. 9–42.
[CrossRef]

Vansteenkiste, T. H.

Verhage, A. J. L.

Wappelhorst, M. H.

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

Whitman, W. B.

J. E. Rogers, W. B. Whitman, Microbial Production and Consumption of Greenhouse Gases (American Society for Microbiology, Washington, D.C., 1991), pp. 7–38.

Woltering, E. J.

Wouters, L. W.

Wu, B.

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

T. X. Lin, W. Rohrbeck, W. Urban, “Long wavelength operation of a CW CO-laser up to 8.18 μm,” Appl. Phys. B 26, 73–76 (1981).
[CrossRef]

T. George, S. Saupe, M. H. Wappelhorst, W. Urban, “The CO fundamental-band laser as secondary frequency standard at 5 μm,” Appl. Phys. B 59, 159–166 (1994).
[CrossRef]

B. Wu, T. George, M. Schneider, W. Urban, B. Nelles, “Development of a new CW single line CO laser on the υ′ = 1 → υ″ = 0 band,” Appl. Phys. B 52, 163–167 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

F. G. Gebhardt, D. C. Smith, “Kinetic cooling of a gas by absorption of CO2 laser radiation,” Appl. Phys. Lett. 20, 129–132 (1972).
[CrossRef]

Appl. Spectrosc. (3)

Biol. Bull. Woods Hole, Mass. (1)

A. Punt, W. J. Parser, J. Kuchlein, “Oxygen uptake in insects with cyclic CO2 release,” Biol. Bull. Woods Hole, Mass. 112, 108–119 (1957).
[CrossRef]

Chem. Phys. (1)

E. Avramides, T. F. Hunter, “Vibrational–translational/ rotational and vibrational–vibrational processes in methane: optoacoustic measurements,” Chem. Phys. 57, 441–451 (1981).
[CrossRef]

Infrared Phys. (1)

S. Bernegger, M. W. Sigrist, “CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

J. Appl. Phys. (2)

J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys. 42, 2719–2730 (1972).
[CrossRef]

L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” J. Appl. Phys. 42, 2934–2943 (1971).
[CrossRef]

J. Chem. Phys. (1)

C. E. Treanor, J. W. Rich, R. G. Rehm, “Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions,” J. Chem. Phys. 48, 1798–1807 (1968).
[CrossRef]

J. Exp. Biol. (1)

J. R. B. Lighton, D. Garrigan, F. D. Duncan, R. A. Johnson, “Respiratory water loss during discontinuous ventilation in queens of the harvester ant Pogonomyrmex rugosus,” J. Exp. Biol. 179, 233–244 (1993).

J. Exp. Zool. (1)

M. C. Quinlan, N. F. Hadley, “New system for concurrent measurement of respiration and water loss in arthropods,” J. Exp. Zool. 222, 255–263 (1982).
[CrossRef]

J. Insect Physiol. (1)

R. I. Levy, H. A. Schneiderman, “Discontinuous respiration in insects IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae,” J. Insect Physiol. 12, 465–492 (1966).
[CrossRef] [PubMed]

J. Phys. D (1)

G. A. Murray, A. L. S. Smith, “Plasma kinetic effects of the addition of oxygen to CO laser discharges,” J. Phys. D 14, 1745–1756 (1981).
[CrossRef]

Pfluegers Arch. Gesamte Physiol. Manschen Tiere (1)

A. Krogh, “Studien über Tracheenrespiration. II. Uber Gasdiffusion in den Tracheen,” Pfluegers Arch. Gesamte Physiol. Manschen Tiere 179, 95–112 (1920).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. H. P. Hackstein, C. K. Stumm, “Methane production in terrestrial arthropods,” Proc. Natl. Acad. Sci. U.S.A. 91, 5441–5445 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

F. G. C. Bijnen, F. J. M. Harren, J. Reuss, “Geometrical optimization of a longitudinal resonant photoacoustic cell; sensitive and fast trace gas detection with applications on gas emission from tomatoes,” Rev. Sci. Instrum. 67 (July1996).
[CrossRef]

Other (10)

E. H. Hazelhoff, “Regeling der ademhaling bij insecten en spinnen,” Ph.D. dissertation (State University Utrecht, Utrecht, The Netherlands, 1926).

J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977).

C. M. Harris, ed., in Handbook of Noise Control (McGraw-Hill, New York, 1957), Chap. 21.

M. Fiedler, C. Golz, U. Platt, “Nonresonant photoacoustic monitoring of atmospheric methane,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 212–221 (1992).

F. G. C. Bijnen, “Refined CO laser photoacoustic trace gas detection; observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, The Netherlands, 1995).

E. B. Edney, Water Balance in Land Arthropods (Springer-Verlag, New York, 1977).
[CrossRef]

P. Kestler, “Respiration and respiratory water loss,” in Environmental Physiology and Biochemistry in Insects, K. H. Hoffmann, ed. (Springer-Verlag, Berlin, 1985), pp. 137–183.

F. G. C. Bijnen, T. Brugman, F. J. M. Harren, J. Reuss, “A liquid nitrogen cooled CO laser in a photoacoustic setup monitors low gas concentrations,” in Photoacoustic and Photothermal Phenomena III, D. D. Bicanic, ed. (Springer-Verlag, Heidelberg, 1992), pp. 34–37.

J. E. Rogers, W. B. Whitman, Microbial Production and Consumption of Greenhouse Gases (American Society for Microbiology, Washington, D.C., 1991), pp. 7–38.

W. Urban, “Infrared lasers for spectroscopy,” in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds. (Kluwer, Deventer, The Netherlands, 1988), pp. 9–42.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

CO laser detection setup in combination with a PA cell: 1, grating to select the appropriate transition; 2, power meter at zero-order reflection of the grating; 3, PA cell; 4, inlet for trace gas running through a quarter lambda notch filter; 5, resonator tube; 6, buffer volume; 7, tunable side arm to minimize window signal; 8, inlet for buffer gas; 9, outlet for buffer gas and trace gas; 10, microphone; 11, CO laser; 12, helium flow to flush the windows; 13, liquid-nitrogen jacket; 14, He, CO, N2, and air mixing barrel in front of laser gas inlet; 15, laser gas outlet toward pump; 16, N2 flow to start laser discharge at start of measurement; 17, chopper; 18, 100% reflecting mirror (R = 10 m); 19, cuvette containing insect; 20, infrared gas analyzer (URAS); 21, 22, cooling traps to remove water vapor for CH4 measurements.

Fig. 2
Fig. 2

250 CO laser lines between 1260 and 2000 cm−1 (7.7 and 5.0 μm). Note that lines around 1750 cm−1 are missing because of water vapor absorption.

Fig. 3
Fig. 3

Absorption spectrum of CH4 in N2 for CO laser transitions. Because of the strong water vapor absorption between 1400 and 1750 cm−1 and strong wall adsorption of water vapor, some water absorption can still be observed.

Fig. 4
Fig. 4

(a) PA signal at the P(11)19 CO laser line resulting from injections of equal amounts (1-mL air containing 2.6% water vapor) either on top of a low or on top of a high water vapor concentration. The injections on the high background result in a larger PA signal. The large background is caused by a cockroach in the cuvette. (b) Square root of the PA signal; the integrated surface under all the peaks is equal.

Fig. 5
Fig. 5

Comparison between the experimental (filled squares) and theoretical (curve) PA signals generated in the resonator as a function of the trace gas flow (1-ppmv ethylene in nitrogen and resonant CO2 laser transition at 949.749 cm−1). The buffers are flushed with pure nitrogen. At a low flow rate the undiluted nitrogen diffuses back into the resonator, decreasing the effective absorption length. At a high flow rate the cell constant is equal to the value obtained when the whole cell is filled with trace gas.

Fig. 6
Fig. 6

Schematic view of the tracheal system of an insect. Trachea (tr) connect the oxygen-consuming and CO2-producing tissues (ti + in) with the ambient atmosphere; (mt) indicates mitochondria. The contact between (tr) and (ti) is accomplished by thin tracheoles (trl). Hemolymph, i.e., insect blood, surrounds tissues and trachea. The trachea are fixed to the epidermis (e) and cuticula (c). The gas exchange is controlled by interior and exterior spiracle valves (sv), which are sometimes protected by a filter (fi).

Fig. 7
Fig. 7

CH4, H2O, and CO2 release patterns of the Periplaneta americana cockroach (40 mm long, fresh weight 1 g). (a) CH4 release was measured by switching between two adjacent laser lines, one strongly [P(10)32] and one weakly [P(9)32] absorbing line. Time resolution was limited by the switching (2 min) and not by the flow in the PA cell (1 L/h). (b) The total flow rate (5 L/h) over the animal was split into two parts, one entered the infrared gas analyzer (4 L/h) for CO2 detection; the other (1 L/h) entered the PA cell for CH4 monitoring. Both gases were measured with an increased time resolution of 15 s since CH4 was determined at only one laser line [P(10)32]. The synchronous observation indicates that methane was released during the breathing of the animal. The phase shift is connected to the higher solubility of CO2 in the hemolymph. (c) H2O and CO2 were measured simultaneously at a total flow over the animal of 10 L/h (split into two equal parts).

Fig. 8
Fig. 8

Almost five breathing cycles from a Gromphadorhina portentosa cockroach (50 mm long, fresh weight 6 g). A high water vapor background signal was observed due to diffusive cuticular release. Three characteristic CFV periods of insect breathing can be distinguished: constriction (17.2–17.4 h), fluttering (17.4–17.6 h), and ventilation (17.6–18.0 h). Note the perfectly synchronized release with CO2. The H2O and CO2 releases were measured with a time resolution of 15 s (5-L/h PA cell and 5-L/h infrared analyzer).

Fig. 9
Fig. 9

CH4, H2O, and CO2 release patterns during the breathing of a scarab beetle. Flow conditions as in Fig. 8. (a) CH4 and CO2 release patterns for a one night period; note that in the morning when people arrived (12 h after the experiment was started) the beetle became restless. (b) Extended view of one breathing pulse from (a). (c) Concomitant H2O and CO2 release patterns during another night period. (d) Extended view of one breathing pulse from (c).

Tables (2)

Tables Icon

Table 1 Characteristic Dimensions and Performance of the PA Cell

Tables Icon

Table 2 Experimental PA Background Signals Compared with Bulk Properties of Various Materials and Surface Qualitiesa

Metrics