Abstract

Annealed proton-exchanged z-cut LiTaO3 planar waveguides fabricated with pyrophosphoric acid have been characterized. For proton exchange, the extraordinary index increase Δne ranged from 0.0119 to 0.0141, depending on the exchange temperature. The effective diffusion coefficient De ranged from 0.1325 μm2/h at 240 °C to 0.545 μm2/h at 280 °C. Single-mode propagation losses were α = 0.7 dB/cm. Compared with benzoic acid, pyrophosphoric acid produces waveguides with a higher Δne and a lower propagation loss. For proton exchange in lithium phosphate-diluted pyrophosphoric acid, a lower Δne was obtained, but De and propagation losses were not reduced. After proton exchange, the waveguides were annealed. The surface index initially increased, peaked, and then decreased. The waveguide depth d and the surface index ns were measured at regular intervals. Figures and empirical formulas relating the waveguide depth d and the surface index increase Δns to the anneal time, anneal temperatures, and the waveguide depth after proton exchange are given. An example is given in which, the desired waveguide parameters d and Δns, the fabrication conditions could be calculated with the previously derived formulas. Propagation losses decreased to 0.4 dB/cm after prolonged annealing.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Spillman, N. A. Sanford, R. A. Soref, “Optical waveguides in LiTaO3 formed by proton-exchange,” Opt. Lett. 8, 497–498 (1983).
    [CrossRef] [PubMed]
  2. T. Findakly, P. Suchoski, F. Leonberger, “High quality LiTaO3 integrated optical waveguides and devices fabricated by the annealed proton exchange technique,” Opt. Lett. 13, 797–799 (1988).
    [CrossRef] [PubMed]
  3. P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
    [CrossRef]
  4. Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
    [CrossRef]
  5. K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
    [CrossRef]
  6. V. V. Atuchin, T. I. Zakhar'yash, “Investigation of H:LiTaO3 optical waveguides,” Sov. Phys.–Tech. Phys. 29, 584 (1984).
  7. Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.
  8. E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.
  9. E. Y. B. Pun, “Recent development of proton-exchanged waveguides and devices in lithium niobate using phosphoric acid,” in Integrated Optics and Optoelectronics II, K. K. Wong ed., Proc. SPIE1374, 2–13 (1990).
  10. K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).
  11. S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).
  12. T. Yuhara, K. Tada, Y. S. Li, “Anomalous refractive index changes in proton-exchanged LiTaO3 optical waveguides: effects of annealing and dilution of proton source,” in Technical Digest of 3rd Microoptics Conference, D3 (Yokohama1991), pp. 42–45.
  13. V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
    [CrossRef]
  14. V. A. Ganshin, Y. N. Korkishko, “Proton-exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features,” Phys. Status Solidi A 119, 11–25 (1990).
    [CrossRef]
  15. V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
    [CrossRef]
  16. P. J. Mathews, A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
    [CrossRef]
  17. H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
    [CrossRef]
  18. A. Loni, R. M. De La Rue, “Proton-exchanged LiNbO3 waveguides: relevance of atmospheric environment during annealing,” Appl. Opt. 31, 5096–5098 (1992).
    [CrossRef] [PubMed]
  19. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
    [CrossRef]
  20. J. Nikolopoulos, G. L. Yip, “Theoretical modelling and characterisation of annealed proton exchanged planar waveguides in z-cut LiNbO3,” J. Lightwave Technol. 9, 864–870 (1991).
    [CrossRef]
  21. N. Goto, G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt. 28, 60–65 (1989).
    [CrossRef] [PubMed]
  22. E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
    [CrossRef]
  23. T. Yuhara, Y. S. Li, K. Tada, “Anomalous refractive-index change in proton-exchanged LiTaO3 optical waveguides after annealing,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 62.

1994

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

1993

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

1992

P. J. Mathews, A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

A. Loni, R. M. De La Rue, “Proton-exchanged LiNbO3 waveguides: relevance of atmospheric environment during annealing,” Appl. Opt. 31, 5096–5098 (1992).
[CrossRef] [PubMed]

1991

E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.

J. Nikolopoulos, G. L. Yip, “Theoretical modelling and characterisation of annealed proton exchanged planar waveguides in z-cut LiNbO3,” J. Lightwave Technol. 9, 864–870 (1991).
[CrossRef]

1990

V. A. Ganshin, Y. N. Korkishko, “Proton-exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features,” Phys. Status Solidi A 119, 11–25 (1990).
[CrossRef]

1989

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

N. Goto, G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt. 28, 60–65 (1989).
[CrossRef] [PubMed]

1988

T. Findakly, P. Suchoski, F. Leonberger, “High quality LiTaO3 integrated optical waveguides and devices fabricated by the annealed proton exchange technique,” Opt. Lett. 13, 797–799 (1988).
[CrossRef] [PubMed]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
[CrossRef]

1987

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

1985

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

1984

V. V. Atuchin, T. I. Zakhar'yash, “Investigation of H:LiTaO3 optical waveguides,” Sov. Phys.–Tech. Phys. 29, 584 (1984).

1983

Ahefeldt, H.

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Al-Shukri, S. M.

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Armenise, M. N.

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Arvidsson, G.

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Atuchin, V. V.

V. V. Atuchin, T. I. Zakhar'yash, “Investigation of H:LiTaO3 optical waveguides,” Sov. Phys.–Tech. Phys. 29, 584 (1984).

Carnera, A.

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Chan, K. C.

E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

Chow, Y. T.

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

Chung, P. S.

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.

De La Rue, R. M.

A. Loni, R. M. De La Rue, “Proton-exchanged LiNbO3 waveguides: relevance of atmospheric environment during annealing,” Appl. Opt. 31, 5096–5098 (1992).
[CrossRef] [PubMed]

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Dimitrov-Kuhl, K. P.

K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).

Duffy, J. F.

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Findakly, T.

Ganshin, V. A.

V. A. Ganshin, Y. N. Korkishko, “Proton-exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features,” Phys. Status Solidi A 119, 11–25 (1990).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
[CrossRef]

Goto, N.

Hou, W. X.

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

Ishikawa, T.

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

Iwashima, T.

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

Korkishko, Y. N.

V. A. Ganshin, Y. N. Korkishko, “Proton-exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features,” Phys. Status Solidi A 119, 11–25 (1990).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
[CrossRef]

Laurell, F.

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Leonberger, F.

Li, Y. S.

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.

T. Yuhara, Y. S. Li, K. Tada, “Anomalous refractive-index change in proton-exchanged LiTaO3 optical waveguides after annealing,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 62.

T. Yuhara, K. Tada, Y. S. Li, “Anomalous refractive index changes in proton-exchanged LiTaO3 optical waveguides: effects of annealing and dilution of proton source,” in Technical Digest of 3rd Microoptics Conference, D3 (Yokohama1991), pp. 42–45.

Loni, A.

Mathews, P. J.

P. J. Mathews, A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

Matthews, P. J.

P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Mazzi, G.

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

Mickelson, A. R.

P. J. Mathews, A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Morozova, T. V.

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
[CrossRef]

Murai, T.

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

Nakabayahsi, T.

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

Nikolopoulos, J.

J. Nikolopoulos, G. L. Yip, “Theoretical modelling and characterisation of annealed proton exchanged planar waveguides in z-cut LiNbO3,” J. Lightwave Technol. 9, 864–870 (1991).
[CrossRef]

Novak, S. W.

P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Palanisamy, T. G.

K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).

Pun, E. Y. B.

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.

E. Y. B. Pun, “Recent development of proton-exchanged waveguides and devices in lithium niobate using phosphoric acid,” in Integrated Optics and Optoelectronics II, K. K. Wong ed., Proc. SPIE1374, 2–13 (1990).

Sakaguchi, Y.

Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.

Sanford, N. A.

Saraikin, V. V.

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

Soref, R. A.

Spillman, W. B.

Suchoski, P.

Tada, K.

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

T. Yuhara, K. Tada, Y. S. Li, “Anomalous refractive index changes in proton-exchanged LiTaO3 optical waveguides: effects of annealing and dilution of proton source,” in Technical Digest of 3rd Microoptics Conference, D3 (Yokohama1991), pp. 42–45.

T. Yuhara, Y. S. Li, K. Tada, “Anomalous refractive-index change in proton-exchanged LiTaO3 optical waveguides after annealing,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 62.

Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.

van de Vaart, H.

K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).

Webjorn, J.

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

Wong, K. K.

K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).

Yip, G. L.

J. Nikolopoulos, G. L. Yip, “Theoretical modelling and characterisation of annealed proton exchanged planar waveguides in z-cut LiNbO3,” J. Lightwave Technol. 9, 864–870 (1991).
[CrossRef]

N. Goto, G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt. 28, 60–65 (1989).
[CrossRef] [PubMed]

Yuhara, T.

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.

T. Yuhara, K. Tada, Y. S. Li, “Anomalous refractive index changes in proton-exchanged LiTaO3 optical waveguides: effects of annealing and dilution of proton source,” in Technical Digest of 3rd Microoptics Conference, D3 (Yokohama1991), pp. 42–45.

T. Yuhara, Y. S. Li, K. Tada, “Anomalous refractive-index change in proton-exchanged LiTaO3 optical waveguides after annealing,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 62.

Zakhar'yash, T. I.

V. V. Atuchin, T. I. Zakhar'yash, “Investigation of H:LiTaO3 optical waveguides,” Sov. Phys.–Tech. Phys. 29, 584 (1984).

Appl. Opt.

Electron. Lett.

E. Y. B. Pun, W. X. Hou, Y. T. Chow, P. S. Chung, “Calculation of extraordinary refractive index change in proton-exchanged LiTaO3 waveguides,” Electron. Lett. 29, 1453–1454 (1993).
[CrossRef]

J. Appl. Phys.

P. J. Mathews, A. R. Mickelson, “Instabilities in annealed proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 71, 5310–5317 (1992).
[CrossRef]

H. Ahefeldt, J. Webjorn, F. Laurell, G. Arvidsson, “Post fabrication changes and dependence on hydrogen concentration of the refractive index of proton-exchanged lithium tantalate waveguides,” J. Appl. Phys. 75, 717–727 (1994).
[CrossRef]

P. J. Matthews, A. R. Mickelson, S. W. Novak, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

J. Lightwave Technol.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
[CrossRef]

J. Nikolopoulos, G. L. Yip, “Theoretical modelling and characterisation of annealed proton exchanged planar waveguides in z-cut LiNbO3,” J. Lightwave Technol. 9, 864–870 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

Y. S. Li, K. Tada, T. Murai, T. Yuhara, “Electrooptic coefficient r33 in proton-exchanged z-cut LiTaO3 waveguides,” Jpn. J. Appl. Phys. 28, L263–L265 (1989).
[CrossRef]

K. Tada, T. Murai, T. Nakabayahsi, T. Iwashima, T. Ishikawa, “Fabrication of LiTaO3 optical waveguide by H+ exchange method,” Jpn. J. Appl. Phys. 26, 503–504 (1987).
[CrossRef]

Opt. Lett.

Phys. Status Solidi A

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, V. V. Saraikin, “The study of proton exchange in lithium tantalate crystals,” Phys. Status Solidi A 114, 457–465 (1989).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, “Proton-exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features,” Phys. Status Solidi A 119, 11–25 (1990).
[CrossRef]

V. A. Ganshin, Y. N. Korkishko, T. V. Morozova, “Properties of proton-exchanged optical waveguiding layers in LiNbO3 and LiTaO3,” Phys. Status Solidi A 110, 397–402 (1988).
[CrossRef]

Proceedings of the 16th Australia Conference on Optical Fibre Technology

E. Y. B. Pun, K. C. Chan, P. S. Chung, “Characterization of proton-exchange LiTaO3 optical waveguide fabricated using phosphoric acid,” in Proceedings of the 16th Australia Conference on Optical Fibre Technology (1991), pp. 206–209.

Sov. Phys.–Tech. Phys.

V. V. Atuchin, T. I. Zakhar'yash, “Investigation of H:LiTaO3 optical waveguides,” Sov. Phys.–Tech. Phys. 29, 584 (1984).

Other

Y. S. Li, T. Yuhara, K. Tada, Y. Sakaguchi, “Characteristics of low-propagation-loss LiTaO3 optical waveguides proton exchanged in pyrophosphoric acid,” in Integrated Photonics Research, Vol. 5 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–142.

E. Y. B. Pun, “Recent development of proton-exchanged waveguides and devices in lithium niobate using phosphoric acid,” in Integrated Optics and Optoelectronics II, K. K. Wong ed., Proc. SPIE1374, 2–13 (1990).

K. K. Wong, T. G. Palanisamy, K. P. Dimitrov-Kuhl, H. van de Vaart, “High performance proton-exchange LiTaO3 devices for integrated optical sensor applications,” in Integrated Optics and Optoelectronics II,K. K. Wong ed., Proc. SPIE1177, 40–47 (1989).

S. M. Al-Shukri, J. F. Duffy, R. M. De La Rue, G. Mazzi, A. Carnera, M. N. Armenise, “Single-mode planar and stripe waveguides by proton exchange in lithium tantalate and lithium niobate,” in Integrated Optical Circuit Engineering III, R. T. Kersten, ed., Proc. SPIE651, 20–25 (1986).

T. Yuhara, K. Tada, Y. S. Li, “Anomalous refractive index changes in proton-exchanged LiTaO3 optical waveguides: effects of annealing and dilution of proton source,” in Technical Digest of 3rd Microoptics Conference, D3 (Yokohama1991), pp. 42–45.

T. Yuhara, Y. S. Li, K. Tada, “Anomalous refractive-index change in proton-exchanged LiTaO3 optical waveguides after annealing,” in Integrated Photonics Research, Vol. 8 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dependence of waveguide depth on proton-exchange time.

Fig. 2
Fig. 2

Dependence of effective diffusion coefficient on exchange temperature.

Fig. 3
Fig. 3

Dependence of Δne on exchange temperature.

Fig. 4
Fig. 4

Evolution of refractive-index profile during annealing. Sample 26.6, Ta = 350 °C. PE, proton exchange.

Fig. 5
Fig. 5

Change in waveguide depth Δd with anneal time: 1, 24.9; 2, 23.32; 3, 28.3; 4, 28.1; 5, 28.4; 6, 23.24; 7, 26.6; 8, 26.4; 9, 23.15; 10, 24.6; 11, 23.9.

Fig. 6
Fig. 6

Dependence of b on dpe.

Fig. 7
Fig. 7

Development of Δns with anneal time: Ta = 400 °C and 500 °C.

Fig. 8
Fig. 8

Development of Δns with anneal time: Ta = 350 °C.

Fig. 9
Fig. 9

Development of Δns with anneal time: Ta = 300 °C.

Fig. 10
Fig. 10

Relationship between surface index and waveguide depths throughout annealing.

Tables (4)

Tables Icon

Table 1 Proton-Exchanged Waveguide Data a

Tables Icon

Table 2 Comparison of Results for Proton-Exchanged z-Cut LiTaO3 Waveguides a

Tables Icon

Table 3 Buffered Proton-Exchanged Waveguide Data a

Tables Icon

Table 4 Annealing Parameters b, c, e, f, npk, and g a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

% buffering = 3 × moles of lithium phosphate ( Li 3 PO 4 ) moles of pyrophosphoric acid ( H 4 P 2 O 7 ) × 100 % .
m = 0 k 1 ( n eff [ m ] calc n eff [ m ] meas ) 2 ,
d = 2 [ t p e × D e ( T p e ) ] 1 / 2
D e ( T ) = D 0 exp ( E a k T p e ) ,
Δ n e = 6.19 × 10 7 T p e 2 2.76 × 10 4 T p e + 4.28 × 10 2 for pure melts
Δ n e = 7.68 × 10 7 T p e 2 3.46 × 10 4 T p e + 5.03 × 10 2 for buffered melts .
n ( z ) = n b + Δ n s exp [ ( z d ) a ] ,
Δ d = d d p e = b t a c ,
b = 0.47 d p e + 2.7 for T a = 400 ° C
b = 0.47 d p e + 1.075 for T a = 350 ° C
b = 0.47 d p e + 0.16 for T a = 300 ° C .
c = 4 × 10 6 T a 2 2 × 10 3 T a + 0.56.
Δ n s = Δ n e + e t a f ,
Δ n s = n p k ( t a t p k + 1 ) g ,
g = 0.086 d p e 0.55 ,
t a = ( d d p e b ) 1 / c .
t p k = ( d p k d p e b ) 1 / c .
t p k = ( 1.27 d p e b ) 1 / c .
Δ n s = Δ n p k [ ( d d p e b ) 1 / c ( 1.27 d p e b ) 1 / c + 1 ] g ,

Metrics