Abstract

The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2N −1 time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mailloux, Phased Array Antenna Handbook (Artech, Boston, 1994).
  2. H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, Boston, 1995).
  3. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
    [CrossRef]
  4. A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
    [CrossRef] [PubMed]
  5. M. Y. Frankel, R. D. Esman, “True time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
    [CrossRef]
  6. D. Dolfi, F. Michel-Gabriel, S. Bann, J.-P. Huignard, “Two dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991); D. Dolfi, S. Bann, J.-P. Huignard, J. Roger, “Two dimensional optical architecture for phase and time-delay beam forming in a phased-array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 481–489 (1992).
    [CrossRef] [PubMed]
  7. N. Riza, “Transmit/receive time-delay beam forming optical architecture for a phased-array antenna,” Appl. Opt. 30, 4594–4595 (1991); N. Riza, N. Madamopoulos, “High signal to noise ratio birefringence compensated optical delay line based on a noise reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
    [CrossRef] [PubMed]
  8. X. S. Yao, L. Maleki, “A novel 2D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  9. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  10. I. Frigyes, A. J. Seeds, “Optically generated true time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995).
    [CrossRef]
  11. J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
    [CrossRef]
  12. J. E. Stockley, G. D. Sharp, S. A. Serati, K. M. Johnson, “Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals,” Opt. Lett. 20, 2441–2443 (1995).
    [CrossRef] [PubMed]
  13. S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
    [CrossRef] [PubMed]
  14. F. Xu, J. E. Ford, Y. Fainman, “Polarization selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  15. For a 20° scan angle and for a 13% frequency bandwidth, the beam squint would be approximately 3°, which is not a primary problem in a radar system but which could be measured in the experiment.

1995 (7)

M. Y. Frankel, R. D. Esman, “True time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

I. Frigyes, A. J. Seeds, “Optically generated true time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995).
[CrossRef]

J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
[CrossRef]

J. E. Stockley, G. D. Sharp, S. A. Serati, K. M. Johnson, “Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals,” Opt. Lett. 20, 2441–2443 (1995).
[CrossRef] [PubMed]

S. H. Song, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
[CrossRef] [PubMed]

F. Xu, J. E. Ford, Y. Fainman, “Polarization selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

1994 (2)

A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

X. S. Yao, L. Maleki, “A novel 2D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

1991 (2)

1990 (1)

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Bann, S.

Bernstein, N.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Caulfield, H. J.

J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
[CrossRef]

Chang, Y.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Davies, K.

Dolfi, D.

Esman, R. D.

M. Y. Frankel, R. D. Esman, “True time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Fainman, Y.

Fetterman, H. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Ford, J. E.

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, R. D. Esman, “True time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

Frigyes, I.

I. Frigyes, A. J. Seeds, “Optically generated true time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995).
[CrossRef]

Fu, J.

J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
[CrossRef]

Goutzoulis, A.

Haus, H. A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Hrycak, P.

Huignard, J.-P.

Johnson, A.

Johnson, K. M.

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Lee, E. H.

Lee, J.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Mailloux, R. J.

R. J. Mailloux, Phased Array Antenna Handbook (Artech, Boston, 1994).

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Michel-Gabriel, F.

Newberg, I.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Ng, W.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Osgood, R. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Riza, N.

Schamschula, M.

J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
[CrossRef]

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Seeds, A. J.

I. Frigyes, A. J. Seeds, “Optically generated true time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995).
[CrossRef]

Serati, S. A.

Sharp, G. D.

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Song, S. H.

Steier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Stockley, J. E.

Tangonan, G.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, Boston, 1995).

Walston, A.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Xu, F.

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Zmuda, H.

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, Boston, 1995).

Zomp, J.

Appl. Opt. (4)

IEEE Microwave Guid. Wave Lett. (1)

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. S. Yao, L. Maleki, “A novel 2D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

I. Frigyes, A. J. Seeds, “Optically generated true time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995).
[CrossRef]

M. Y. Frankel, R. D. Esman, “True time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

J. Lightwave Technol. (1)

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true time delay,” J. Lightwave Technol. 9, 1124–1131 (1990); see also J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Opt. Commun. (1)

J. Fu, M. Schamschula, H. J. Caulfield, “Modular solid optic time delay system,” Opt. Commun. 121, 8–12 (1995).
[CrossRef]

Opt. Lett. (2)

Other (3)

R. J. Mailloux, Phased Array Antenna Handbook (Artech, Boston, 1994).

H. Zmuda, E. N. Toughlian, Photonic Aspects of Modern Radar (Artech, Boston, 1995).

For a 20° scan angle and for a 13% frequency bandwidth, the beam squint would be approximately 3°, which is not a primary problem in a radar system but which could be measured in the experiment.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Time and phase delays for a phased-array antenna: BC, frequency shifter Bragg cell; A j , microwave amplifiers; E j , radiating elements.

Fig. 2
Fig. 2

Optical control of the phase of the microwave signals. M 0 is a liquid-crystal cell used in the ECB mode.

Fig. 3
Fig. 3

Operating principle of the delay modules: (a) the position of P i determines the delay value, and (b) the thickness (l) of the glass plate determines the delay value.

Fig. 4
Fig. 4

Schematic diagram of the 2-D compact architecture that uses holographic back-plane technology.

Fig. 5
Fig. 5

Schematic diagram of the phased-array antenna: Sixteen radiating elements provide a 5° elevation directivity; each element, made up of 18 dipoles, provides a 5° directivity in the azimuth; the maximum scan angle in elevation is 30°.

Fig. 6
Fig. 6

Phased-array antenna developed from a Thomson-CSF tracking radar.

Fig. 7
Fig. 7

Photograph of our 2-D architecture experimental setup: Operating parameters are 2.5–3.5 GHz, 4 × 4 channels, 32 time delays (5 bits at 17.5, 35, 70, 140, and 280 mm), and a 7-bit phase control between 0 and 2π.

Fig. 8
Fig. 8

Far-field pattern of the optically controlled phased-array antenna. All the microwave signals at 3 GHz feeding the antenna are optically adjusted to be in phase to provide an on-axis main lobe. The 7-dB dispersion of the amplitude levels is used to perform a diagram apodization (high level in the center of the antenna, low level at the edges).

Fig. 9
Fig. 9

Far-field patterns of the optically controlled phased-array antenna: time-delay scanning between 0° and 20° over the frequency range 2700–3100 MHz. The relative amplitude is in decibels. The 7-dB dispersion of the amplitude level is randomly distributed across the antenna.

Fig. 10
Fig. 10

Superposition of the far-field patterns for the frequency range 2700–3100 MHz and for different scan angles (5°, 8°, 14°, 18°) obtained by time-delay scanning, with no beam squint. The amplitude is in decibels.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i k ( t ) = i 0 cos { 2 π f t + [ 2 π λ e Δ n ( V k ) ] } ,
i k ( t ) = i 0 cos [ 2 π f t + 2 π f j = 1 N ε k , j 2 j 1 τ + 2 π λ e Δ n ( V k ) ] .

Metrics