Abstract

Image blur in acousto-optic tunable filters (AOTF’s) has been a persistent problem. Here we describe the connection between transducer structure and image blur and experimentally measure it by using a 5-cm 12°-cut TeO2 crystal of our design. With these quantitative results, we develop an image-processing method that minimizes AOTF-related image degradation. The combination of long crystal design and image processing results in substantially improved image contrast and spatial resolution relative to conventional AOTF imaging devices. We present high-magnification images of fluorescent actin fibers in cells in which we obtain a resolution of approximately 0.35 μm, representing the first successful use of an AOTF for ultra-high-resolution microscopy. Further improvements are also predicted.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of 6th Scandinavian Conference on Image Analysis, M. Pietikainen, J. Roning, eds. (Pattern Recognition Society, Finland, 1989), Vol. 1, pp. 294–300.
  2. T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).
  3. I. C. Chang, “Electronically tuned imaging spectrometer using acousto-optic tunable filter,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 24–29 (1992).
  4. D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
    [CrossRef]
  5. Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
    [CrossRef]
  6. G. Gao, Z. Lin, “Acousto-optic supermultispectral imaging,” Appl. Opt. 32, 3081–3086 (1993).
    [CrossRef] [PubMed]
  7. L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).
  8. T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).
  9. R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
    [CrossRef]
  10. W. H. Smith, “Spectral differential imaging detection of planets about nearby stars,” Publ. Astron. Soc. Pac. 99, 1344–1353 (1987).
    [CrossRef]
  11. W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
    [CrossRef]
  12. D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).
  13. D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef] [PubMed]
  14. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  15. P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
    [CrossRef]
  16. M. D. Schaeberle, J. F. Turner, P. J. Treado, “Multiplexed acousto-optic tunable filter spectral imaging microscopy,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 11–20 (1994).
  17. P. J. Treado, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pa. 15260 (personal communication, 1995).
  18. I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
    [CrossRef]
  19. I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
    [CrossRef]
  20. T. Yano, A. Watanabe, “Acousto-optic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15, 2250–2258 (1976).
    [CrossRef] [PubMed]
  21. I. C. Chang, “Acousto-optic devices and applications,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. II, p. 12.12.
  22. Ref. 21, p. 12.13.
  23. R. J. Pieper, T. Poon, “System characterization of apodized acousto-optic Bragg cells,” J. Opt. Soc. Am. A 7, 1751–1758 (1990).
    [CrossRef]
  24. A patent application is currently pending on the instrument described in the preceding paragraphs.
  25. L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. 1, 113–121 (1982).
    [CrossRef]
  26. T. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 7, 666–673 (1988).
    [CrossRef]
  27. D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
    [CrossRef]

1994

1993

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

G. Gao, Z. Lin, “Acousto-optic supermultispectral imaging,” Appl. Opt. 32, 3081–3086 (1993).
[CrossRef] [PubMed]

Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
[CrossRef]

1992

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
[CrossRef]

1991

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

1990

1988

T. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 7, 666–673 (1988).
[CrossRef]

1987

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

W. H. Smith, “Spectral differential imaging detection of planets about nearby stars,” Publ. Astron. Soc. Pac. 99, 1344–1353 (1987).
[CrossRef]

1982

L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. 1, 113–121 (1982).
[CrossRef]

1976

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
[CrossRef]

T. Yano, A. Watanabe, “Acousto-optic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15, 2250–2258 (1976).
[CrossRef] [PubMed]

Baxter, G.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Bergstrahl, J.

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).

Bergstralh, J.

Chang, I. C.

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

I. C. Chang, “Acousto-optic devices and applications,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. II, p. 12.12.

I. C. Chang, “Electronically tuned imaging spectrometer using acousto-optic tunable filter,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 24–29 (1992).

Chao, T.

T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).

Cheng, L.

T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).

T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

Cui, D.

Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
[CrossRef]

Cui, Y.

Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
[CrossRef]

De Biasio, R.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Dowdy, M.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

Dwelle, R.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Farkas, D. L.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Frederick, E. E.

R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
[CrossRef]

Gao, G.

Glenar, D. A.

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef] [PubMed]

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).

Gottlieb, M.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Gough, A.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Hallikainen, J.

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of 6th Scandinavian Conference on Image Analysis, M. Pietikainen, J. Roning, eds. (Pattern Recognition Society, Finland, 1989), Vol. 1, pp. 294–300.

Hegbloom, E.

T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).

Hillman, J. J.

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef] [PubMed]

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).

Holmes, T.

T. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 7, 666–673 (1988).
[CrossRef]

Hoyt, C. C.

Jaaskelainen, T.

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of 6th Scandinavian Conference on Image Analysis, M. Pietikainen, J. Roning, eds. (Pattern Recognition Society, Finland, 1989), Vol. 1, pp. 294–300.

Katzka, P.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Kurtz, I.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

LaBaw, C.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

Lambert, J.

T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).

Levin, I. W.

Lewis, E. N.

Lin, Z.

Mahoney, C.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

Melamed, N. T.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Morris, H. R.

Nederhof, M. A.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Pane, D.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Pane, J.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Parkkinen, J. P. S.

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of 6th Scandinavian Conference on Image Analysis, M. Pietikainen, J. Roning, eds. (Pattern Recognition Society, Finland, 1989), Vol. 1, pp. 294–300.

Patek, D. R.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Pieper, R. J.

Poon, T.

Rappaport, S. A.

R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
[CrossRef]

Reyes, G.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).

Ryan, K. W.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Schaeberle, M. D.

M. D. Schaeberle, J. F. Turner, P. J. Treado, “Multiplexed acousto-optic tunable filter spectral imaging microscopy,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 11–20 (1994).

Seif, B.

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef] [PubMed]

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).

Shepp, L. A.

L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. 1, 113–121 (1982).
[CrossRef]

Smith, K. M.

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

Smith, W. H.

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

W. H. Smith, “Spectral differential imaging detection of planets about nearby stars,” Publ. Astron. Soc. Pac. 99, 1344–1353 (1987).
[CrossRef]

Suhre, D. R.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Tang, J.

Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
[CrossRef]

Taylor, D. L.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Taylor, L. H.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Treado, P. J.

H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
[CrossRef]

P. J. Treado, I. W. Levin, E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
[CrossRef]

M. D. Schaeberle, J. F. Turner, P. J. Treado, “Multiplexed acousto-optic tunable filter spectral imaging microscopy,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 11–20 (1994).

P. J. Treado, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pa. 15260 (personal communication, 1995).

Turner, J. F.

M. D. Schaeberle, J. F. Turner, P. J. Treado, “Multiplexed acousto-optic tunable filter spectral imaging microscopy,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 11–20 (1994).

Vardi, Y.

L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. 1, 113–121 (1982).
[CrossRef]

Watanabe, A.

Wattson, R. B.

R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
[CrossRef]

Yano, T.

Yu, J.

T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).

Ann. Rev. Physiol.

D. L. Farkas, G. Baxter, R. De Biasio, A. Gough, M. A. Nederhof, D. Pane, J. Pane, D. R. Patek, K. W. Ryan, D. L. Taylor, “Multimode light microscopy and the dynamics of molecules, cells, and tissues,” Ann. Rev. Physiol. 55, 785–817 (1993).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Exp. Astron.

W. H. Smith, K. M. Smith, “A polarimetric spectral imager using acousto-optic tunable filters,” Exp. Astron. 1, 329–343 (1991).
[CrossRef]

Icarus

R. B. Wattson, S. A. Rappaport, E. E. Frederick, “Imaging spectrometer study of Jupiter and Saturn,” Icarus 27, 417–422 (1976).
[CrossRef]

IEEE Trans. Med. Imag.

L. A. Shepp, Y. Vardi, “Maximum-likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. 1, 113–121 (1982).
[CrossRef]

IEEE Trans. Sonics Ultrason.

I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

J. Opt. Soc. Am. A

T. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 7, 666–673 (1988).
[CrossRef]

R. J. Pieper, T. Poon, “System characterization of apodized acousto-optic Bragg cells,” J. Opt. Soc. Am. A 7, 1751–1758 (1990).
[CrossRef]

Opt. Eng.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic tunable filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Y. Cui, D. Cui, J. Tang, “Study on the characteristics of an imaging spectrum system by means of an acousto-optic tunable filter,” Opt. Eng. 32, 2899–2902 (1993).
[CrossRef]

Publ. Astron. Soc. Pac.

W. H. Smith, “Spectral differential imaging detection of planets about nearby stars,” Publ. Astron. Soc. Pac. 99, 1344–1353 (1987).
[CrossRef]

Rev. Sci. Instrum.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Other

I. C. Chang, “Acousto-optic devices and applications,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. II, p. 12.12.

Ref. 21, p. 12.13.

L. Cheng, T. Chao, M. Dowdy, C. LaBaw, C. Mahoney, G. Reyes, “Multispectral imaging systems using acousto-optic tunable filter,” in Infrared and Millimeter Wave Engineering, H. Buscher, ed., Proc. SPIE1874, 224–231 (1993).

T. Chao, G. Reyes, E. Hegbloom, L. Cheng, “Spatial-spectral optical pattern recognition using an acousto-optic tunable filter preprocessor,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 410–415 (1993).

D. A. Glenar, J. J. Hillman, B. Seif, J. Bergstrahl, “POLARIS II: an acousto-optic imaging spectropolarimeter for ground based astronomy,” in Polarization and Remote Sensing, W. G. Egan, ed., Proc. SPIE1747, 92–101 (1992).

J. Hallikainen, J. P. S. Parkkinen, T. Jaaskelainen, “Color image processing with AOTF,” in Proceedings of 6th Scandinavian Conference on Image Analysis, M. Pietikainen, J. Roning, eds. (Pattern Recognition Society, Finland, 1989), Vol. 1, pp. 294–300.

T. Chao, J. Yu, L. Cheng, J. Lambert, “AOTF imaging spectrometer for NASA applications: breadboard demonstration,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE1347, 655–663 (1990).

I. C. Chang, “Electronically tuned imaging spectrometer using acousto-optic tunable filter,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 24–29 (1992).

M. D. Schaeberle, J. F. Turner, P. J. Treado, “Multiplexed acousto-optic tunable filter spectral imaging microscopy,” in Image Acquisition and Scientific Imaging Systems, H. C. Titus, A. Waks, eds., Proc. SPIE2173, 11–20 (1994).

P. J. Treado, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pa. 15260 (personal communication, 1995).

A patent application is currently pending on the instrument described in the preceding paragraphs.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Phase-matching in a noncollinear AOTF. The optical wavevectors, k i and k d , are defined by their angles θ i and θ d from the optic axis; the acoustic wavevector, k a , is defined by its angle α from the acoustic axis, and n e (λ) and n o (λ) indicate the extraordinary and ordinary index of refraction ellipsoids. (b) Imaging with an AOTF. Ideal AOTF imaging is indicated by the black dashed lines, in which each point on the object plane maps to a unique point on the image plane. Finite-length transducers produce a spread of acoustic angles in the crystal, which lead to more than one diffracted output angle for a given incident angle. The resulting image blur is shown in gray.

Fig. 2
Fig. 2

Diagram of the AOTF used for the imaging measurements.

Fig. 3
Fig. 3

(a) Schematic of the imaging AOTF microscope. The AOTF is incorporated in a research-grade upright fluorescence microscope in place of the standard emission interference filters to provide fast, spectrally versatile, all-electronic emission filtering. (b) Apparatus for spectral characterization of the AOTF output. A 75-W Xe arc lamp followed by a pinhole spatial filter provides nearly parallel rays of white light at the entrance face of the AOTF. The diffracted beam is analyzed with an optical multichannel analyzer.

Fig. 4
Fig. 4

Transducer structure determines image blur in the AOTF. (a) Dark-field images of 0.121-μm opaque beads taken through the AOTF at a frequency of 74 MHz, using one, two, and six transducer slices; these correspond to transducer lengths of 0.33, 0.66, and 1.98 cm, respectively. The differences in central peak width and sideband structure between the various transducer configurations are readily apparent. (b) Quantification of (a) and comparison of results to theory. Intensity versus wavelength data (top) and intensity versus output angle data (bottom) are shown for the three images of (a). Theoretical curves for each of the transducer con-figurations, obtained by taking the squared magnitude of the Fourier transform in the direction of light propagation, are shown in the center panel.

Fig. 5
Fig. 5

Effect of image deconvolution on AOTF image quality. An AOTF image of group 8 of a standard U.S. Air Force resolution target using a transducer length of 1.98 cm is shown before (left) and after (right) expectation maximization deconvolution. Processing sharpens the target lines and decreases the background level. The smallest pattern at the bottom of the figure consists of 1.1-μm lines and spaces and is clearly resolved.

Fig. 6
Fig. 6

Ultra-high-resolution AOTF images: actin fibers in fluorescence. AOTF images of Rhodamine-labeled actin fibers are shown at 40× magnification before (left) and after (center) processing. The image on the right, shown after processing, was taken at 100× magnification through the AOTF and corresponds to the rectangular region indicated in the center photograph. The graphs below each image represent line intensity profiles taken along the white lines shown at the bottom right of each picture. At 40×, the minimum feature size resolvable before processing is 1.0 μm; after processing this is reduced to 0.8 μm and contrast is improved threefold. With the 100× objective, a resolution of 0.35 μm is obtained.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k d = k i + k a ,
n e ( λ , θ d ) cos ( θ d ) - n o ( λ ) cos ( θ i ) + F λ / V sin ( α ) = 0 , n e ( λ , θ d ) sin ( θ d ) - n o ( λ ) sin ( θ i ) - F λ / V cos ( α ) = 0 ,
I out ( λ , θ d ) = C 2 I inc ( λ ) I α ( α ) δ [ k d ( θ d , λ ) - k i ( θ i , λ ) - k a ( α , F ) ] .
I out ~ I α ( α ) .
I inc ( λ ) = η I exc ( λ ) + I fl ( λ ) ,

Metrics