Abstract

The effectiveness of surface-bonded and embedded optical fibers for the detection of ultrasonic Lamb waves in 2–3-mm-thick steel, carbon-fiber-reinforced plastic (CFRP) and glass-reinforced plastic (GRP) plates are compared. A novel integrating ultrasonic sensor was achieved using the signal arm of an actively stabilized 633-nm homodyne Mach–Zehnder fiber interferometer which was either bonded directly to the plate surface or spliced to single-mode fibers embedded within a composite plate during manufacture. An embedded fiber is shown to be about 20 times more sensitive to Lamb wave motions than a surface-bonded fiber. However, the latter may be more practical.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, 1967), Chap. 2, p. 67.
  2. A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
    [CrossRef]
  3. N. Guo, P. Cawley, “Lamb wave reflection for the quick non-destructive evaluation of large composite laminates,” Mater. Eval. 52, 404–411 (1994).
  4. B. Culshaw, C. Michie, “Fibre optic strain and temperature measurements in composite material—a review of the OSTIC programme,” in Recent Advances in Sensory Materials and Their Applications, C. A. Rogers, R. C. Rogers, eds. (Technomic, Lancaster, Pa., 1992), pp. 791–808.
  5. R. M. Measures, “Fibre optic sensing for composite smart structures,” in Advisory Group for Aerospace Research and Development Conference Proceedings 531, Smart Structures For Aircraft and Spacecraft, 75th Meeting of AGARD Structures and Materials Panel, (NATO, Advisory Group for Aerospace Research and Development, Springfield, Va., 1993), Sec. 11, p. 1–43.
  6. D. A. Jackson, J. D. C. Jones, “Interferometers,” in Optical Fibre Sensors, B. Culshaw, J. Dakin, eds. (Artech House, Boston, 1989), Vol. 2, pp. 329–380.
  7. S. G. Pierce, “Development of fibre-optic interferometers for the measurement of laser generated ultrasound, Ph.D. dissertation, (University of Manchester, Cambridge, 1993), Chap. 6, p. 145.
  8. D. A. Jackson, R. Priest, A. Dandridge, T. B. Tveten, “Elimination of drift in a single mode optical fibre interferometer using a piezoelectrically stretched fibre coil,” Appl. Opt. 19, 2926–2929 (1980).
    [CrossRef] [PubMed]
  9. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.
  10. C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, 1990).
  11. J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 2nd ed. (Springer-Verlag, New York, 1977), Chap. 1, p. 18.
  12. G. B. Hocker, “Fibre-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]

1994 (1)

N. Guo, P. Cawley, “Lamb wave reflection for the quick non-destructive evaluation of large composite laminates,” Mater. Eval. 52, 404–411 (1994).

1980 (1)

1979 (1)

Cawley, P.

N. Guo, P. Cawley, “Lamb wave reflection for the quick non-destructive evaluation of large composite laminates,” Mater. Eval. 52, 404–411 (1994).

Culshaw, B.

B. Culshaw, C. Michie, “Fibre optic strain and temperature measurements in composite material—a review of the OSTIC programme,” in Recent Advances in Sensory Materials and Their Applications, C. A. Rogers, R. C. Rogers, eds. (Technomic, Lancaster, Pa., 1992), pp. 791–808.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Dandridge, A.

Dewhurst, R. J.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.

Drain, L. E.

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, 1990).

Gachagan, A.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Guo, N.

N. Guo, P. Cawley, “Lamb wave reflection for the quick non-destructive evaluation of large composite laminates,” Mater. Eval. 52, 404–411 (1994).

Hayward, G.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Hocker, G. B.

Hutchins, D. A.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.

Jackson, D. A.

D. A. Jackson, R. Priest, A. Dandridge, T. B. Tveten, “Elimination of drift in a single mode optical fibre interferometer using a piezoelectrically stretched fibre coil,” Appl. Opt. 19, 2926–2929 (1980).
[CrossRef] [PubMed]

D. A. Jackson, J. D. C. Jones, “Interferometers,” in Optical Fibre Sensors, B. Culshaw, J. Dakin, eds. (Artech House, Boston, 1989), Vol. 2, pp. 329–380.

Jones, J. D. C.

D. A. Jackson, J. D. C. Jones, “Interferometers,” in Optical Fibre Sensors, B. Culshaw, J. Dakin, eds. (Artech House, Boston, 1989), Vol. 2, pp. 329–380.

Krautkramer, H.

J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 2nd ed. (Springer-Verlag, New York, 1977), Chap. 1, p. 18.

Krautkramer, J.

J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 2nd ed. (Springer-Verlag, New York, 1977), Chap. 1, p. 18.

McNab, A.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Measures, R. M.

R. M. Measures, “Fibre optic sensing for composite smart structures,” in Advisory Group for Aerospace Research and Development Conference Proceedings 531, Smart Structures For Aircraft and Spacecraft, 75th Meeting of AGARD Structures and Materials Panel, (NATO, Advisory Group for Aerospace Research and Development, Springfield, Va., 1993), Sec. 11, p. 1–43.

Michie, C.

B. Culshaw, C. Michie, “Fibre optic strain and temperature measurements in composite material—a review of the OSTIC programme,” in Recent Advances in Sensory Materials and Their Applications, C. A. Rogers, R. C. Rogers, eds. (Technomic, Lancaster, Pa., 1992), pp. 791–808.

Palmer, S. B.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.

Philp, W. R.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Pierce, S. G.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

S. G. Pierce, “Development of fibre-optic interferometers for the measurement of laser generated ultrasound, Ph.D. dissertation, (University of Manchester, Cambridge, 1993), Chap. 6, p. 145.

Priest, R.

Scruby, C. B.

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, 1990).

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.

Tveten, T. B.

Viktorov, I. A.

I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, 1967), Chap. 2, p. 67.

Appl. Opt. (2)

Mater. Eval. (1)

N. Guo, P. Cawley, “Lamb wave reflection for the quick non-destructive evaluation of large composite laminates,” Mater. Eval. 52, 404–411 (1994).

Other (9)

B. Culshaw, C. Michie, “Fibre optic strain and temperature measurements in composite material—a review of the OSTIC programme,” in Recent Advances in Sensory Materials and Their Applications, C. A. Rogers, R. C. Rogers, eds. (Technomic, Lancaster, Pa., 1992), pp. 791–808.

R. M. Measures, “Fibre optic sensing for composite smart structures,” in Advisory Group for Aerospace Research and Development Conference Proceedings 531, Smart Structures For Aircraft and Spacecraft, 75th Meeting of AGARD Structures and Materials Panel, (NATO, Advisory Group for Aerospace Research and Development, Springfield, Va., 1993), Sec. 11, p. 1–43.

D. A. Jackson, J. D. C. Jones, “Interferometers,” in Optical Fibre Sensors, B. Culshaw, J. Dakin, eds. (Artech House, Boston, 1989), Vol. 2, pp. 329–380.

S. G. Pierce, “Development of fibre-optic interferometers for the measurement of laser generated ultrasound, Ph.D. dissertation, (University of Manchester, Cambridge, 1993), Chap. 6, p. 145.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in NDT, R. S. Sharpe ed. (Academic, New York, 1982), Vol. 5, pp. 281–327.

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, 1990).

J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 2nd ed. (Springer-Verlag, New York, 1977), Chap. 1, p. 18.

I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, 1967), Chap. 2, p. 67.

A. Gachagan, S. G. Pierce, W. R. Philp, A. McNab, G. Hayward, B. Culshaw, “Detection of ultrasonic Lamb waves in composite plates using optical-fibres,” in Proceedings of the 1995 UFFC, IEEE International Ultrasonics Symposium (IEEE, New York, 1995), pp. 803–806.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Conceptual illustration of a structurally integrated ultrasonic transducer and sensor.

Fig. 2
Fig. 2

Michelson (top) and Mach–Zehnder (bottom) fiber interferometers.

Fig. 3
Fig. 3

Schematic diagram of experimental setup. SMF, single-mode fiber.

Fig. 4
Fig. 4

Michelson and Mach–Zehnder signals from laser-generated Rayleigh waves in steel.

Fig. 5
Fig. 5

Mach–Zehnder signal amplitude as a function of bonded-fiber gauge length for laser-generated Rayleigh waves.

Fig. 6
Fig. 6

Effect of buffer coat on the response of bonded fiber (22-mm length) to 2-MHz Rayleigh waves.

Fig. 7
Fig. 7

Water-coupled optical fiber for detecting A 0 Lamb waves in steel plate.

Fig. 8
Fig. 8

Response of the Michelson interferometer to A 0 Lamb waves at the surface of a steel plate.

Fig. 9
Fig. 9

Signal responses of the water-coupled fiber and the surface-bonded fiber Mach–Zehnder interferometer to A 0 Lamb waves in steel plate.

Fig. 10
Fig. 10

Surface sensors for monitoring S 0 and A 0 Lamb waves in steel plate.

Fig. 11
Fig. 11

Michelson and Mach–Zehnder signals for S 0 and A 0 Lamb waves in steel plate.

Fig. 12
Fig. 12

Comparison between Michelson and Mach–Zehnder edge-mounted responses to S 0 mode in steel.

Fig. 13
Fig. 13

Comparison between response of embedded and surface-bonded optical fibers to S 0-mode Lamb waves with a 3-mm-thick CFRP plate.

Fig. 14
Fig. 14

Sensor sensitivity profile as the ultrasonic source is moved along the embedded fiber.

Metrics