Abstract

Fiber-optic transmission of Q-switched ruby laser pulses is limited by fiber damage owing to the high laser-beam intensities. Pulse stretching with a semiconductor-based control circuit for the Pockels cell of the ruby laser to reduce the peak intensities is described. Pulses with durations from 200 ns to 1 μs and a coherence length of ~3 m were generated. These pulses were coupled into multimode optical fibers to investigate the transmission characteristics and the limits of transmittable pulse energies. Stretched pulses can be transmitted in quartz fibers with a 600-μm core diameter to pulse energies of 300 mJ, which is an increase by a factor of 4 compared with standard Q-switched pulses. It is expected that beam guiding of ruby laser pulses by fiber optics will significantly facilitate the use of holographic interferometry in technical applications such as vibration analysis.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 1.6, p. 57; Chap. 4.3, p. 177.
  2. W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
    [CrossRef]
  3. R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
    [CrossRef]
  4. G. Harigel, C. Baltay, M. Bregman, M. Hibbs, A. Schaffer, H. Bjelkhagen, J. Hawkins, W. Williams, P. Nailor, R. Michaels, H. Akbari, “Pulse stretching in a Q-switched ruby laser for bubble chamber holography,” Appl. Opt. 25, 4102–4110 (1986).
    [CrossRef] [PubMed]
  5. X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
    [CrossRef]

1992 (1)

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

1986 (1)

1981 (1)

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

1975 (1)

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
[CrossRef]

Akbari, H.

Baltay, C.

Bjelkhagen, H.

Bregman, M.

Chraplyry, A. R.

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Derosier, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Harigel, G.

Hawkins, J.

Hibbs, M.

Jopson, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Lovberg, R. V.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
[CrossRef]

Lowdermilk, W.

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Mao, X. P.

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Michaels, R.

Milam, D.

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

Nailor, P.

Schaffer, A.

Tkach, R. W.

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Vest, C.

C. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 1.6, p. 57; Chap. 4.3, p. 177.

Williams, W.

Wooding, E. R.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
[CrossRef]

Yeoman, M. L.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

W. Lowdermilk, D. Milam, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. QE-17, 1888–1903 (1981).
[CrossRef]

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse stretching and shape control by compound feedback in a Q-switched ruby laser,” IEEE J. Quantum Electron. QE-11, 17–21 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. P. Mao, R. W. Tkach, A. R. Chraplyry, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Other (1)

C. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 1.6, p. 57; Chap. 4.3, p. 177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of the ruby laser system: RM, rear mirror; OM, output mirror; MS, mode-selection aperture; O, ruby oscillator rod; E, étalons; PC, Pockels cell; M, mirrors; L, lens; SF, spatial filter; A1, A2, amplifiers; PD, pin photodiode; PSE, pulse-stretching electronics.

Fig. 2
Fig. 2

Pulse-stretching electronics.

Fig. 3
Fig. 3

Sequence of triggering of transistors T1, T2, and T3 in the circuit shown in Fig. 2.

Fig. 4
Fig. 4

Stretched ruby laser pulse.

Fig. 5
Fig. 5

Average pulse power of standard Q-switched and stretched pulses versus pulse duration defined according to Eq. (1).

Fig. 6
Fig. 6

Experimental setup for measuring the transmission characteristics of standard Q-switched and stretched pulses in optical fibers.

Fig. 7
Fig. 7

Transmission of standard Q-switched pulses in a quartz–quartz fiber with a 600-mm core diameter; the parameter is the fiber position with respect to the location of the beam waist of the incident laser beam.

Fig. 8
Fig. 8

Wave forms of incident, transmitted, and reflected laser power for standard Q-switched pulses with the incident pulse energy as the parameter.

Fig. 9
Fig. 9

Maximum transmitted pulse energies for standard Q-switched and stretched laser pulses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ 2 = 12 E - + ( t - t c g ) 2 P ( t ) d t

Metrics