Abstract

The fringe visibility measured by a stellar interferometer may be degraded if the interferometer uses an air delay line without compensating for longitudinal dispersion. Whereas in such circumstances simultaneous observations across the visible spectrum are shown to be impracticable at baselines as short as 10 m, it is shown possible to detect 95% of the visibility amplitude if the measurements are made sequentially at different wavelengths and the fractional bandwidth Δλ/λ at 950 nm is restricted to less than 10% when the baseline is 10 m, 6% at 30 m, and 3% at 100 m.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tango, “Dispersion in stellar interferometry,” Appl. Opt. 29, 516–521 (1990).
    [CrossRef] [PubMed]
  2. T. A. ten Brummelaar, “Differential path considerations in optical stellar interferometry,” Appl. Opt. 34, 2214–2219 (1995).
    [CrossRef] [PubMed]
  3. P. R. Lawson, J. Davis, “Dispersion compensation in stellar interferometry,” Appl. Opt. 35, 612–620 (1996).
    [CrossRef] [PubMed]
  4. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59 (1967).
    [CrossRef] [PubMed]
  5. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1992), pp. 190–196.

1996 (1)

1995 (1)

1990 (1)

1967 (1)

Davis, J.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1992), pp. 190–196.

Lawson, P. R.

Owens, J. C.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1992), pp. 190–196.

Tango, W. J.

ten Brummelaar, T. A.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1992), pp. 190–196.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1992), pp. 190–196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Bandwidth limitations as a function of mean wavelength for a stellar interferometer using air delay lines without dispersion compensation. These restrictions become more severe as the matching path differences in air and vacuum increase. Examples are shown for vacuum path differences x v of (a) 10 m, (b) 30 m, and (c) 100 m. In each example the percentage response to the visibility amplitude is shown for five cases from a 99% to a 50% response.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( σ ) = 2 π σ { x v + x a [ 1 + N a ( σ ) ] } ,
x a d d σ [ σ N a ( σ ) ] | σ ¯ = - x v - x a .
x a = - x v + d .
d = ξ x v ,
ξ = { d d σ [ σ N a ( σ ) ] } { 1 + d d σ [ σ N a ( σ ) ] } - 1 | σ ¯ .
ϕ 0 ( σ ) = 2 π σ x v [ ξ + ( ξ - 1 ) N a ( σ ) ] .
Ψ ( σ ¯ ) = 0 g ( σ ) exp [ - i ϕ 0 ( σ ) ] d σ .
Ψ ( σ ¯ ) 2 = | σ 1 σ 2 cos [ ϕ 0 ( σ ) ] d σ | 2 + | σ 1 σ 2 sin [ ϕ 0 ( σ ) ] d σ | 2 .
σ 1 = ( 1 / σ ¯ + Δ λ / 2 ) - 1 ,
σ 2 = ( 1 / σ ¯ - Δ λ / 2 ) - 1 ,

Metrics