Abstract

Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–2274 (1993).
    [CrossRef] [PubMed]
  2. R. J. Tench, M. R. Kozlowski, R. Chow, “Defect geometries and laser-induced damage in multilayer coatings,” in Proceedings of Optical Thin Film IV: New Developments, J. D. Rancourt, ed. Proc. SPIE2262, 60–66 (1994).
  3. H. K. Pulker, Coatings on Glass, 3rd ed. (Elsevier, Amsterdam, 1987), Chap. 6, p. 177, Eq. 59.
  4. D. H. Doehlert, Basic Experimental Strategies, 6th ed. (The Experimental Strategies Foundation, Seattle, Wash., 1992), Chaps. 11, 13, and 21.
  5. jmp, version 2.0.5, SAS Institute Inc., SAS Campus Dr., Cary, N.C. 27513.
  6. R. J. Hill, ed., Physical Vapor Deposition (Temescal, Berkeley, Calif., 1986), p. 46.
  7. H. R. Smith, “Deposition distribution and rates from electron-beam-heated vapor sources,” in the Society of Vacuum Coaters Twelfth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, N.M., 1969), pp. 50–54.

1993

Chow, R.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–2274 (1993).
[CrossRef] [PubMed]

R. J. Tench, M. R. Kozlowski, R. Chow, “Defect geometries and laser-induced damage in multilayer coatings,” in Proceedings of Optical Thin Film IV: New Developments, J. D. Rancourt, ed. Proc. SPIE2262, 60–66 (1994).

Doehlert, D. H.

D. H. Doehlert, Basic Experimental Strategies, 6th ed. (The Experimental Strategies Foundation, Seattle, Wash., 1992), Chaps. 11, 13, and 21.

Falabella, S.

Kozlowski, M. R.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–2274 (1993).
[CrossRef] [PubMed]

R. J. Tench, M. R. Kozlowski, R. Chow, “Defect geometries and laser-induced damage in multilayer coatings,” in Proceedings of Optical Thin Film IV: New Developments, J. D. Rancourt, ed. Proc. SPIE2262, 60–66 (1994).

Loomis, G. E.

Pulker, H. K.

H. K. Pulker, Coatings on Glass, 3rd ed. (Elsevier, Amsterdam, 1987), Chap. 6, p. 177, Eq. 59.

Rainer, F.

Smith, H. R.

H. R. Smith, “Deposition distribution and rates from electron-beam-heated vapor sources,” in the Society of Vacuum Coaters Twelfth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, N.M., 1969), pp. 50–54.

Stolz, C. J.

Tench, R. J.

R. J. Tench, M. R. Kozlowski, R. Chow, “Defect geometries and laser-induced damage in multilayer coatings,” in Proceedings of Optical Thin Film IV: New Developments, J. D. Rancourt, ed. Proc. SPIE2262, 60–66 (1994).

Appl. Opt.

Other

R. J. Tench, M. R. Kozlowski, R. Chow, “Defect geometries and laser-induced damage in multilayer coatings,” in Proceedings of Optical Thin Film IV: New Developments, J. D. Rancourt, ed. Proc. SPIE2262, 60–66 (1994).

H. K. Pulker, Coatings on Glass, 3rd ed. (Elsevier, Amsterdam, 1987), Chap. 6, p. 177, Eq. 59.

D. H. Doehlert, Basic Experimental Strategies, 6th ed. (The Experimental Strategies Foundation, Seattle, Wash., 1992), Chaps. 11, 13, and 21.

jmp, version 2.0.5, SAS Institute Inc., SAS Campus Dr., Cary, N.C. 27513.

R. J. Hill, ed., Physical Vapor Deposition (Temescal, Berkeley, Calif., 1986), p. 46.

H. R. Smith, “Deposition distribution and rates from electron-beam-heated vapor sources,” in the Society of Vacuum Coaters Twelfth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, N.M., 1969), pp. 50–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Thickness distribution plate. The thickness distributions were taken from witness flats attached to a stationary platen. The platen was centered 61 cm above the e-beam hearth. The Si wafer was used to collect defects during the HfO2 coating runs.

Fig. 2
Fig. 2

Typical normalized thickness distribution. These particular data are from SiO2 run 13 and are fitted to Eq. (1). The graph is a top view, looking down through the platen to the e-beam source. The marker indicates the filament side of the source. The irregularities at the edges were caused by the interpolation routine’s encountering a drop of thickness to zero.

Fig. 3
Fig. 3

Surface contour of the cosine exponent N s . The power exponents of the SiO2 responses are plotted according to Eq. (5a), where DP = +1.

Fig. 4
Fig. 4

Surface contour of the cosine exponent N h . The power exponent of the HfO2 responses are plotted according to Eq. (5b) where (a) A = +1, (b) A = −1.

Fig. 5
Fig. 5

Surface contour of the SiO2 boule erosion E. Equation (7) is plotted as a function of R and S, given that P = +1, the pattern that increases the E response. The surface contours of N s and E may be overlaid to find operating ranges for the desired response.

Fig. 6
Fig. 6

Surface contour of the HfO2 defect density ρ. Equation (8) was plotted to determine the optimal settings of A = +1 and P = 0. The values of R = −1, and S = D = 0 were given as optimal values from a statistical software program.

Tables (2)

Tables Icon

Table 1 Experimental Design Strategy Run Matrixa

Tables Icon

Table 2 Minimal HfO2 Defect Densitya

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T exp = C 1 x 2 + C 2 y 2 + C 3 x y ,
T cos = h 2 / ( h 2 + r 2 ) cos 2 N Φ ,
S ( N ) = T exp - T cos .
N s = 1.53 + 0.144 R + 0.064 P - 0.001 D - 0.31 A - 0.106 S + 0.139 R 2 + 0.011 P 2 + 0.042 D 2 + 0.072 A 2 - 0.051 S 2 - 0.006 P R + 0.008 D R - 0.114 D P + 0.033 A R - 0.024 A P - 0.048 A D - 0.092 S R - 0.032 S P - 0.078 S D - 0.051 S A ,
N h = 1.59 + 0.193 R - 0.012 P - 0.011 D + 0.067 A + 0.017 S + 0.022 R 2 + 0.137 P 2 + 0.072 D 2 + 0.037 A 2 - 0.248 S 2 + 0.033 P R + 0.051 D R + 0.016 D P - 0.011 A R + 0.054 A P + 0.009 A D + 0.008 S R + 0.02 S P - 0.055 S D - 0.115 S A ,
N s = 1.53 + 0.144 R - 0.106 S - 0.092 S R - 0.114 D P ,
N h = 1.59 + 0.193 R - 0.115 S A .
E = 3.51 + 0.33 R + 0.28 P + 0.22 D - 0.22 A - 0.28 S - 0.17 R 2 - 0.67 P 2 - 0.58 D 2 + 0.41 A 2 - 0.67 S 2 - 0.06 P R + 0.06 D R - 0.06 D P + 0.06 A R - 0.06 A P + 0.07 A D - 0.06 S R + 0.06 S P - 0.06 S D - 0.06 S A .
E = 3.51 + 0.33 R + 0.28 P - 0.28 S - 0.67 P 2 - 0.67 S 2 .
ρ = 5.5 - 4.07 R + 2.03 P - 1.54 D - 0.13 A + 2.86 S + 1.34 R 2 + 2.88 P 2 - 1.67 D 2 - 0.12 A 2 + 0.75 S 2 - 0.98 P R + 0.31 D R - 0.93 A R - 1.63 S R + 0.41 D P - 2.55 A P + 5.41 S P + 0.79 S D - 2.52 A D - 1.42 S A .
ρ = 5.5 - 4.07 R + 2.03 P + 2.86 S - 2.52 D A - 2.55 A P + 5.41 S P ,

Metrics