Abstract

Numerous characterizations were performed on 120-nm thick evaporated SiO2 layers in order to understand how their features change as a function of deposition conditions and time. Density decreases with increasing deposition pressure. It governs all the layer properties (refractive index, hardness, and stress). In situ stress measurements show that stress can be divided into intrinsic and water-induced components, respectively linked to local density (outside the pores) and porosity. Intrinsic stress increase with decreasing pressure is explained by a diminution of the Si-O-Si bond angle (IR measurements). Long-term evolution is characterized by stress relaxation related to Si-O-Si strained bond hydrolysis.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Doener, W. D. Nix, “A method for interpreting data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986).
    [Crossref]
  2. D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
    [Crossref]
  3. H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
    [Crossref]
  4. E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
    [Crossref]
  5. H. Sankur, W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
    [Crossref]
  6. G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
    [Crossref]
  7. W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1080 (1977).
    [Crossref]
  8. J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
    [Crossref]

1995 (1)

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

1992 (1)

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

1990 (1)

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

1989 (1)

H. Sankur, W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
[Crossref]

1987 (1)

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

1986 (1)

M. F. Doener, W. D. Nix, “A method for interpreting data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986).
[Crossref]

1980 (1)

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[Crossref]

1977 (1)

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1080 (1977).
[Crossref]

Doener, M. F.

M. F. Doener, W. D. Nix, “A method for interpreting data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986).
[Crossref]

Fabes, D. B.

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

Gunning, W.

H. Sankur, W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
[Crossref]

Hirsch, E. H.

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[Crossref]

Irene, E. A.

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

Kim, S. S.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

Lucovsky, G.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

Manitini, M. J.

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

McKee, R. A.

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

Nix, W. D.

M. F. Doener, W. D. Nix, “A method for interpreting data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986).
[Crossref]

Oliver, W. C.

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

Pliskin, W. A.

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1080 (1977).
[Crossref]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

Sankur, H.

H. Sankur, W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
[Crossref]

Srivastava, J. K.

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

Theil, J. A.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Tsu, D. V.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

Walker, F. J.

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

Watkins, M. W.

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

J. Appl. Phys. (2)

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[Crossref]

H. Sankur, W. Gunning, “Sorbed water and intrinsic stress in composite TiO2–SiO2 films,” J. Appl. Phys. 66, 807–812 (1989).
[Crossref]

J. Mater. Res. (2)

M. F. Doener, W. D. Nix, “A method for interpreting data from depth-sensing indentation instruments,” J. Mater. Res. 1, 601–609 (1986).
[Crossref]

D. B. Fabes, W. C. Oliver, R. A. McKee, F. J. Walker, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations,” J. Mater. Res. 7, 3056–3064 (1992).
[Crossref]

J. Phys. D (1)

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[Crossref]

J. Vac. Sci. Technol. (1)

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1080 (1977).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor,” J. Vac. Sci. Technol. A 8, 1374–1381 (1990).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. Lucovsky, M. J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

In situ measurements of integrated stress as a function of time for the different deposition conditions.

Fig. 2
Fig. 2

Average stress measured by interferometry as a function of time after deposition for the different deposition conditions.

Fig. 3
Fig. 3

Density versus deposition pressure.

Fig. 4
Fig. 4

Plastic hardness versus deposition pressure.

Fig. 5
Fig. 5

Dispersion curves of refractive index for different deposition conditions. A curve of a film evaporated from SiO under an O2 residual pressure of 1.8 × 10−4 mbar is shown for comparison. Its O:Si ratio was estimated to be 1.9 by RBS measurement.

Fig. 6
Fig. 6

Refractive index at 630 nm as a function of time after deposition for the different deposition conditions.

Fig. 7
Fig. 7

Film thickness as a function of time after deposition for the different deposition conditions. The programmed thickness was adjusted for the different deposition conditions in order to obtain films of approximately 120 nm.

Fig. 8
Fig. 8

IR transmission spectrum for an SiO2 layer evaporated at 1.5 × 10−5 mbar at ambient temperature.

Fig. 9
Fig. 9

Position of the Si-O-Si stretching peak versus time after deposition for the different deposition conditions.

Fig. 10
Fig. 10

Full-width at half-maximum of the Si-O-Si stretching peak as a function of its position for the different deposition conditions.

Fig. 11
Fig. 11

Average film stress as a function of the position of the Si-O-Si stretching peak.

Tables (1)

Tables Icon

Table 1 Pressures and Natures of Reactive Gas for the Different Depositions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s = E s t s 2 3 ( 1 - υ s ) L 2 δ ,
σ = s / t f .

Metrics