Abstract

A two-beam setup based on the totally reflecting prism coupler is shown to be a powerful means of characterizing light-induced refractive-index modifications in dielectric thin films. Rise and relaxation times and amplitudes of thin-film refractive-index variations can be measured. Some developments of the electromagnetic theory of prism coupling are presented for Gaussian incident beams. Measurements made on a single Ta2O5 layer deposited on a silica glass are presented. Relaxation times of a few milliseconds reveal the thermal origin of the phenomena. The thermal nonlinear coefficient of this Ta2O5 layer is nearly 10−15 m2/W.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
    [CrossRef]
  2. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  3. P. K. Tien, R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  4. R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
    [CrossRef]
  5. H. Rigneault, F. Flory, S. Monneret, “Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films,” Appl. Opt. 34, 4358–4368 (1995).
    [CrossRef] [PubMed]
  6. R. Petit, M. Cadillac, “Théorie électromagnétique du coupleur à prisme,” J. Opt. (Paris) 8, 41–49 (1977).
    [CrossRef]
  7. S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
    [CrossRef]
  8. M. Bertolotti, A. Ferrari, C. Sibilia, G. Suber, D. Apostol, P. Jani, “Photothermal deflection technique for measuring thermal nonlinearities in semiconductor glasses,” Appl. Opt. 27, 1811–1813 (1988).
    [CrossRef] [PubMed]
  9. M. Bertolotti, E. Fazio, A. Ferrari, F. Michelotti, G. C. Righini, C. Sibilia, “Nonlinear coupling in a planar waveguide,” Opt. Lett. 15, 425–427 (1990).
    [CrossRef] [PubMed]
  10. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.
  11. H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, 1986), Chap. 2, pp. 11–40.
  12. J. Chilwell, I. Hodgkinson, “Thin-film field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984).
    [CrossRef]
  13. C. Falco, A. Azema, J. Botineau, D. B. Ostrowsky, “Infrared prism coupling characterization and optimization via near-field m-line scanning,” Appl. Opt. 21, 1847–1850 (1982).
    [CrossRef] [PubMed]
  14. J. T. Chilwell, “Prism coupler jig: interference fringes enable observation of the coupling gap,” Appl. Opt. 21, 1310–1319 (1982).
    [CrossRef] [PubMed]
  15. W. Lukosz, P. Pirani, V. Briguet, “Optical bistability by photothermal displacement in prism coupling into planar waveguides,” Opt. Lett. 12, 263–265 (1987).
    [CrossRef] [PubMed]
  16. M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Dekker, New York, 1995), pp. 329–365.
  17. M. Commandré, P. Roche, Laboratoire d’Optique des Surfaces et des Couches Minces, Ecole Nationale Supérieure de Physique, 13397 Marseille Cedex 20, France (personal communication, 1995).
  18. F. Flory, H. Rigneault, N. Maythaveekulchai, F. Zamkotsian, “Characterization by guided wave of instabilities of optical coatings submitted to high-power flux: thermal and third-order nonlinear properties of dielectric thin films,” Appl. Opt. 32, 5628–5639 (1993).
    [CrossRef] [PubMed]

1995 (1)

1993 (1)

1990 (1)

1988 (1)

1987 (1)

1986 (1)

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

1984 (1)

1982 (2)

1977 (1)

R. Petit, M. Cadillac, “Théorie électromagnétique du coupleur à prisme,” J. Opt. (Paris) 8, 41–49 (1977).
[CrossRef]

1973 (1)

1970 (2)

1969 (1)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Apostol, D.

Azema, A.

Bertolotti, M.

Botineau, J.

Briguet, V.

Cadillac, M.

R. Petit, M. Cadillac, “Théorie électromagnétique du coupleur à prisme,” J. Opt. (Paris) 8, 41–49 (1977).
[CrossRef]

Chilwell, J.

Chilwell, J. T.

J. T. Chilwell, “Prism coupler jig: interference fringes enable observation of the coupling gap,” Appl. Opt. 21, 1310–1319 (1982).
[CrossRef] [PubMed]

Commandré, M.

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Dekker, New York, 1995), pp. 329–365.

M. Commandré, P. Roche, Laboratoire d’Optique des Surfaces et des Couches Minces, Ecole Nationale Supérieure de Physique, 13397 Marseille Cedex 20, France (personal communication, 1995).

Delisle, C.

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

Falco, C.

Fazio, E.

Ferrari, A.

Flory, F.

Hodgkinson, I.

Jani, P.

Jerominek, H.

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

Lukosz, W.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, 1986), Chap. 2, pp. 11–40.

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Maythaveekulchai, N.

Michelotti, F.

Monneret, S.

Ostrowsky, D. B.

Patela, S.

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

Petit, R.

R. Petit, M. Cadillac, “Théorie électromagnétique du coupleur à prisme,” J. Opt. (Paris) 8, 41–49 (1977).
[CrossRef]

Pirani, P.

Pulker, H. K.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.

Righini, G. C.

Rigneault, H.

Roche, P.

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Dekker, New York, 1995), pp. 329–365.

M. Commandré, P. Roche, Laboratoire d’Optique des Surfaces et des Couches Minces, Ecole Nationale Supérieure de Physique, 13397 Marseille Cedex 20, France (personal communication, 1995).

Sibilia, C.

Suber, G.

Tien, P. K.

P. K. Tien, R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Torge, R.

Tremblay, R.

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

Ulrich, R.

Zamkotsian, F.

Appl. Opt. (1)

J. T. Chilwell, “Prism coupler jig: interference fringes enable observation of the coupling gap,” Appl. Opt. 21, 1310–1319 (1982).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

J. Appl. Phys. (1)

S. Patela, H. Jerominek, C. Delisle, R. Tremblay, “Nonlinear optical properties of thin-film waveguides deposited onto semiconductor-doped glasses,” J. Appl. Phys. 60, 1591–1594 (1986).
[CrossRef]

J. Opt. (Paris) (1)

R. Petit, M. Cadillac, “Théorie électromagnétique du coupleur à prisme,” J. Opt. (Paris) 8, 41–49 (1977).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (4)

M. Commandré, P. Roche, “Characterization of absorption by photothermal deflection,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Dekker, New York, 1995), pp. 329–365.

M. Commandré, P. Roche, Laboratoire d’Optique des Surfaces et des Couches Minces, Ecole Nationale Supérieure de Physique, 13397 Marseille Cedex 20, France (personal communication, 1995).

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), pp. 247–256.

H. A. Macleod, Thin-Film Optical Filters (Hilger, Bristol, 1986), Chap. 2, pp. 11–40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

TRPC and coordinate frames.

Fig. 2
Fig. 2

Plane-wave-normalized spectra of the electric field inside the thin film when a resonance is excited into it, given for different values of the air thickness (50, 100, 150, 200, and 250 nm); w 0 = 23 μm. Curves are drawn versus incidence angles in air relative to the resonance angle θ s .

Fig. 3
Fig. 3

Normalized intensity of the total electric field inside the TRPC for the TE6 resonance; air-layer thickness 110 nm, w 0 = 23 μm.

Fig. 4
Fig. 4

Coupling efficiency versus air-layer thickness for w 0 = 13, 23, and 33 μm; TE6 resonance. This coupling efficiency is defined as the ratio of the maximal power carried in the thin film over the power incident upon the prism base.

Fig. 5
Fig. 5

Normalized intensity profile of the reflected electric near field E NF on the x axis; air-layer thickness 110 nm, w 0 = 23 μm, TE6 resonance. The light propagates from left to right.

Fig. 6
Fig. 6

Evolution of the ratio I 1/I 2 versus the air-layer thickness for w 0 = 13, 23, and 33 μm; TE6 resonance.

Fig. 7
Fig. 7

Experimental setup. Both the pump and the probe beams excite a resonance in the thin film.

Fig. 8
Fig. 8

Experimental results giving error spaces obtained from eight independent measurements of an air-layer thickness performed simultaneously with two beams of different wavelengths.

Fig. 9
Fig. 9

Recording of the signal given by the photodetector when it is translated in the reflected probe beam, giving the intensity transverse profile of the probe m line.

Fig. 10
Fig. 10

Examples of signals given by the photodetector: (a) placed on the incident chopped pump beam, (b) placed on the reflected probe beam for the TE pump polarization, (c) placed on the reflected probe beam for the TM pump polarization.

Fig. 11
Fig. 11

Experimental determination of the evolution of the amplitude Δn of the refractive index of the Ta2O5 layer versus I max (corresponding incident pump laser power from ~100 to 450 mW); f = 200 Hz.

Fig. 12
Fig. 12

Evolution of the air-layer thickness and the thermal nonlinear coefficient n 2 versus the pump power; f = 200 Hz.

Tables (2)

Tables Icon

Table 1 Pump-Beam and Probe-Beam Characteristics

Tables Icon

Table 2 Experimental Values of the Thermal Nonlinear Coefficient n 2 Obtained for a Single Ta2O5 Layer

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E i ( X , Y , 0 ) = E 0 exp ( - X 2 w 0 2 ) exp ( - Y 2 w 0 2 )             ( for z < 0 ) ,
E i ( X , Y , 0 ) = exp ( - Y 2 w 0 2 ) - + E i ( σ , Z = 0 ) × exp ( 2 i π σ X ) d σ             ( for z < 0 ) ,
E i ( σ , Z = 0 ) = E 0 π w 0 exp ( - π 2 w 0 2 σ 2 ) .
E i ( x , y , 0 ) = exp ( - y 2 w 0 2 ) - + E i ( σ - σ 0 , 0 ) × exp ( 2 i π σ x ) d σ .
E ( x , y , z ) = exp ( - y 2 w 0 2 ) - + E ( σ - σ 0 , z ) × exp ( 2 i π σ x ) d σ ,
E NF ( x , y , 0 ) = exp ( - y 2 w 0 2 ) - + E i ( σ - σ 0 , 0 ) r ( σ ) × exp ( 2 i π σ x ) d σ ,
I max = 2 π P max d w 0

Metrics