Abstract

The dielectric function ɛ˜( ɛ˜ = ɛ1 + iɛ2) of silicon oxynitride films deposited on silicon wafers by dual ion-beam sputtering is determined by infrared ellipsometry between 580 and 5000 cm−1. The phase-separation model is unable to reproduce the experimental data. The dependence of ɛ˜ on stoichiometry is analyzed with the microscopic Si-centered tetrahedron model. The random-bonding model with five SiO4− jNj (j = 0–4) tetrahedra gives a good description of the spectra, provided the dielectric function of the mixed tetrahedra is carefully chosen.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Apfel, “The classical oscillator dispersion model for optical coatings,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE1270, 94–104 (1990).
  2. N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
    [CrossRef]
  3. M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
    [CrossRef]
  4. T. S. Eriksson, C. G. Granqvist, “Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
    [CrossRef]
  5. H. R. Philipp, “Optical and bonding model for non-crystalline SiOx and SiOxNy materials,” J. Non-Cryst. Solids 8-10, 627–632 (1972).
    [CrossRef]
  6. M. Ida, P. Chaton, B. Rafin, “Control of silicon oxynitride refractive index by reactive assisted ion beam sputter deposition,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 404–413 (1994).
  7. Variable-angle Fourier-transform infrared spectroscopic ellipsometer Model 3 is a product of Sopra, 26 rue Pierre Joigneaux, 92270 Bois-Colombes, France.
  8. C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B 38, 1255–1273 (1988).
    [CrossRef]
  9. W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
    [CrossRef]
  10. A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
    [CrossRef]
  11. G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
    [CrossRef]
  12. S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
    [CrossRef]
  13. H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).
  14. U. Teschner, “Infrared optical properties of amorphous silicon oxynitride and their theoretical interpretation,” Phys. Status Solidi A 121, 641–656 (1990).
    [CrossRef]
  15. D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 749.
  17. J. Petalas, S. Logothetidis, “Tetrahedron-model analysis of silicon nitride thin films and the effect of hydrogen and temperature on their optical properties,” Phys. Rev. B 50, 11801–11816 (1994).
    [CrossRef]
  18. Z. Yin, F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Phys. Rev. B 42, 3658–3665 (1990); “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective medium-approximation analysis,” Phys. Rev. B 42, 3666–3675 (1990).
    [CrossRef]
  19. D. E. Aspnes, J. B. Theeten, “Dielectric function of Si–SiO2 and Si–Si3N4 mixtures,” J. Appl. Phys. 50, 4928–4935 (1979).
    [CrossRef]
  20. A. Sasella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Phys. Rev. B 48, 14208–14215 (1993).
    [CrossRef]
  21. B. Pivac, “Infrared study of structural changes in silicon oxynitride films,” J. Mater. Sci. Lett. 12, 23–26 (1993).

1995 (1)

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

1994 (1)

J. Petalas, S. Logothetidis, “Tetrahedron-model analysis of silicon nitride thin films and the effect of hydrogen and temperature on their optical properties,” Phys. Rev. B 50, 11801–11816 (1994).
[CrossRef]

1993 (3)

A. Sasella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Phys. Rev. B 48, 14208–14215 (1993).
[CrossRef]

B. Pivac, “Infrared study of structural changes in silicon oxynitride films,” J. Mater. Sci. Lett. 12, 23–26 (1993).

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

1990 (2)

Z. Yin, F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Phys. Rev. B 42, 3658–3665 (1990); “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective medium-approximation analysis,” Phys. Rev. B 42, 3666–3675 (1990).
[CrossRef]

U. Teschner, “Infrared optical properties of amorphous silicon oxynitride and their theoretical interpretation,” Phys. Status Solidi A 121, 641–656 (1990).
[CrossRef]

1989 (1)

S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
[CrossRef]

1988 (1)

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B 38, 1255–1273 (1988).
[CrossRef]

1987 (2)

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
[CrossRef]

1986 (1)

T. S. Eriksson, C. G. Granqvist, “Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

1985 (1)

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

1979 (1)

D. E. Aspnes, J. B. Theeten, “Dielectric function of Si–SiO2 and Si–Si3N4 mixtures,” J. Appl. Phys. 50, 4928–4935 (1979).
[CrossRef]

1977 (1)

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

1972 (1)

H. R. Philipp, “Optical and bonding model for non-crystalline SiOx and SiOxNy materials,” J. Non-Cryst. Solids 8-10, 627–632 (1972).
[CrossRef]

Anbutsu, H.

S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
[CrossRef]

Apfel, J. H.

J. H. Apfel, “The classical oscillator dispersion model for optical coatings,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE1270, 94–104 (1990).

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, “Dielectric function of Si–SiO2 and Si–Si3N4 mixtures,” J. Appl. Phys. 50, 4928–4935 (1979).
[CrossRef]

Borghesi, A.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

Caudano, R.

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

Chaton, P.

M. Ida, P. Chaton, B. Rafin, “Control of silicon oxynitride refractive index by reactive assisted ion beam sputter deposition,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 404–413 (1994).

Corni, F.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

Diatezua, M. D.

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

Emerson, B. L.

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

Eriksson, T. S.

T. S. Eriksson, C. G. Granqvist, “Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).

Granqvist, C. G.

T. S. Eriksson, C. G. Granqvist, “Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

Hasegawa, S.

S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
[CrossRef]

Ida, M.

M. Ida, P. Chaton, B. Rafin, “Control of silicon oxynitride refractive index by reactive assisted ion beam sputter deposition,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 404–413 (1994).

Irene, E. A.

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

Kirk, C. T.

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B 38, 1255–1273 (1988).
[CrossRef]

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

Kurata, Y.

S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
[CrossRef]

Lambin, Ph.

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).

Logothetidis, S.

J. Petalas, S. Logothetidis, “Tetrahedron-model analysis of silicon nitride thin films and the effect of hydrogen and temperature on their optical properties,” Phys. Rev. B 50, 11801–11816 (1994).
[CrossRef]

Lucarno, P.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

Lucovsky, G.

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

Manitini, J.

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

Naiman, N. L.

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 749.

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).

Petalas, J.

J. Petalas, S. Logothetidis, “Tetrahedron-model analysis of silicon nitride thin films and the effect of hydrogen and temperature on their optical properties,” Phys. Rev. B 50, 11801–11816 (1994).
[CrossRef]

Philipp, H. R.

H. R. Philipp, “Optical and bonding model for non-crystalline SiOx and SiOxNy materials,” J. Non-Cryst. Solids 8-10, 627–632 (1972).
[CrossRef]

Pivac, B.

B. Pivac, “Infrared study of structural changes in silicon oxynitride films,” J. Mater. Sci. Lett. 12, 23–26 (1993).

Pliskin, W. A.

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

Rafin, B.

M. Ida, P. Chaton, B. Rafin, “Control of silicon oxynitride refractive index by reactive assisted ion beam sputter deposition,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 404–413 (1994).

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).

Rojas, S.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

Sasella, A.

A. Sasella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Phys. Rev. B 48, 14208–14215 (1993).
[CrossRef]

Sassella, A.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

Schalch, D.

D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
[CrossRef]

Scharmann, A.

D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
[CrossRef]

Senturia, S. D.

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

Smith, F. W.

Z. Yin, F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Phys. Rev. B 42, 3658–3665 (1990); “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective medium-approximation analysis,” Phys. Rev. B 42, 3666–3675 (1990).
[CrossRef]

Srivastava, J. K.

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

Taitel, J. B.

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

Teschner, U.

U. Teschner, “Infrared optical properties of amorphous silicon oxynitride and their theoretical interpretation,” Phys. Status Solidi A 121, 641–656 (1990).
[CrossRef]

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, “Dielectric function of Si–SiO2 and Si–Si3N4 mixtures,” J. Appl. Phys. 50, 4928–4935 (1979).
[CrossRef]

Thiry, P. A.

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

Wolfrat, R.

D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
[CrossRef]

Yin, Z.

Z. Yin, F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Phys. Rev. B 42, 3658–3665 (1990); “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective medium-approximation analysis,” Phys. Rev. B 42, 3666–3675 (1990).
[CrossRef]

Zanotti, L.

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

J. Appl. Phys. (3)

T. S. Eriksson, C. G. Granqvist, “Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[CrossRef]

N. L. Naiman, C. T. Kirk, B. L. Emerson, J. B. Taitel, S. D. Senturia, “The constitution of nitrided oxides and reoxidized nitrided oxides on silicon,” J. Appl. Phys. 58, 779–792 (1985).
[CrossRef]

D. E. Aspnes, J. B. Theeten, “Dielectric function of Si–SiO2 and Si–Si3N4 mixtures,” J. Appl. Phys. 50, 4928–4935 (1979).
[CrossRef]

J. Mater. Sci. Lett. (1)

B. Pivac, “Infrared study of structural changes in silicon oxynitride films,” J. Mater. Sci. Lett. 12, 23–26 (1993).

J. Non-Cryst. Solids (2)

H. R. Philipp, “Optical and bonding model for non-crystalline SiOx and SiOxNy materials,” J. Non-Cryst. Solids 8-10, 627–632 (1972).
[CrossRef]

A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, L. Zanotti, “Silicon oxynitride study by the tetrahedron model and by spectroscopic ellipsometry,” J. Non-Cryst. Solids 187, 395–402 (1995).
[CrossRef]

J. Vac. Sci. Technol. (1)

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. Lucovsky, J. Manitini, J. K. Srivastava, E. A. Irene, “Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy,” J. Vac. Sci. Technol. B 5, 530–537 (1987).
[CrossRef]

Philos. Mag. B (1)

S. Hasegawa, H. Anbutsu, Y. Kurata, “Connection between Si—N and Si—H vibrational properties in amorphous SiNx:H films,” Philos. Mag. B 59, 365–375 (1989).
[CrossRef]

Phys. Rev. B (5)

J. Petalas, S. Logothetidis, “Tetrahedron-model analysis of silicon nitride thin films and the effect of hydrogen and temperature on their optical properties,” Phys. Rev. B 50, 11801–11816 (1994).
[CrossRef]

Z. Yin, F. W. Smith, “Tetrahedron model for the optical dielectric function of hydrogenated amorphous silicon nitride alloys,” Phys. Rev. B 42, 3658–3665 (1990); “Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective medium-approximation analysis,” Phys. Rev. B 42, 3666–3675 (1990).
[CrossRef]

M. D. Diatezua, P. A. Thiry, Ph. Lambin, R. Caudano, “Infrared response of silicon oxynitrides investigated by high-resolution-electron-energy-loss-spectroscopy,” Phys. Rev. B 48, 8701–8708 (1993).
[CrossRef]

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B 38, 1255–1273 (1988).
[CrossRef]

A. Sasella, “Tetrahedron model for the optical dielectric function of H-rich silicon oxynitride,” Phys. Rev. B 48, 14208–14215 (1993).
[CrossRef]

Phys. Status Solidi A (1)

U. Teschner, “Infrared optical properties of amorphous silicon oxynitride and their theoretical interpretation,” Phys. Status Solidi A 121, 641–656 (1990).
[CrossRef]

Thin Solid Films (1)

D. Schalch, A. Scharmann, R. Wolfrat, “IR transmittance studies of hydrogen-free and hydrogenated silicon nitride and silicon oxynitride films deposited by reactive sputtering,” Thin Solid Films 155, 301–308 (1987).
[CrossRef]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 749.

H. Leplan, B. Geenen, J. Y. Robic, Y. Pauleau, “Residual stresses in silicon dioxide thin films prepared by reactive electron beam evaporation,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 1263–1274 (1994).

J. H. Apfel, “The classical oscillator dispersion model for optical coatings,” in Optical Thin Films and Applications, R. Herrmann, ed., Proc. SPIE1270, 94–104 (1990).

M. Ida, P. Chaton, B. Rafin, “Control of silicon oxynitride refractive index by reactive assisted ion beam sputter deposition,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE2253, 404–413 (1994).

Variable-angle Fourier-transform infrared spectroscopic ellipsometer Model 3 is a product of Sopra, 26 rue Pierre Joigneaux, 92270 Bois-Colombes, France.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Tan Ψ, (b) cos Δ spectra of five (SiO2)1− z (SiN4/3) z alloys for increasing z values: 1, 0.28; 2, 0.37; 3, 0.49; 4, 0.53; 5, 0.73. The angle of incidence is 75°.

Fig. 2
Fig. 2

Real ɛ1 and imaginary ɛ2 parts of the complex dielectric function versus wave number for (SiO2)1− z (SiN4/3) z alloys with z = (a) 0.28, (b) 0.49, (c) 0.73, (d) 0.86; solid curve, experimental data; dashed curve, RB model calculation with one oscillator per tetrahedron (Table 2).

Fig. 3
Fig. 3

(a) Real, (b) imaginary parts of the complex dielectric function versus wave number for (solid curve) sample 3 (z = 0.49), (dashed curve) a mixture of SiO2 and Si3N4 with the same index z.

Fig. 4
Fig. 4

Fundamental structural units: (a) O bridge in silicon oxide, (b) N triangle in silicon nitride, (c) O bridge and N triangle in silicon oxynitride with next-nearest neighbors X = O or N.

Fig. 5
Fig. 5

Real ɛ1 and imaginary ɛ2 parts of the complex dielectric function versus wave number for (SiO2)1− z (SiN4/3) z alloys with z = (a) 0.28, (b) 0.49, (c) 0.73, (d) 0.86; solid curve, experimental data; dashed curve, RB model calculation with two oscillators per mixed tetrahedron (Table 3).

Tables (3)

Tables Icon

Table 1 Process Parameters of Six SiOxNy Films

Tables Icon

Table 2 Oscillator Parameters used in the RB Model (One Oscillator for SiO2 and Si3N4)

Tables Icon

Table 3 Oscillator Parameters used in the RB Model (Two Oscillators for SiO2 and Si3N4)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

z = 3 y 2 x + 3 y ,
2 x + 3 y = 4
j = 0 4 ɛ ( j ) ( ω ) - ɛ ˜ ( ω ) ɛ ( j ) ( ω ) + 2 ɛ ˜ ( ω ) f ( j ) = 0 , j = 0 4 f ( j ) = 1 ,
ɛ ( j ) ( ω ) = ɛ ( j ) + k F k ( j ) ω k ( j ) 2 - ω 2 - i ω Γ k ( j ) ,
X k ( j ) = X k ( 0 ) - [ X k ( 0 ) - X k ( 4 ) ] j / 4 ,
P ( j ) = 4 ! ( 1 - z ) 4 - j z j ( 4 - j ) ! j ! ,
f ( j ) = P ( j ) V ( j ) i = 0 4 P ( i ) V ( i ) ,
V ( j ) = 1 4 ( 4 - j ) V SiO 2 + 1 4 j V SiN 4 / 3 ,

Metrics