Abstract

It is possible to design normal-incidence antireflection coatings that reduce the reflectance of any substrate with a refractive index that lies in the range of 1.48 to 1.75. The performance of such coatings depends on the width of the spectral region over which the reflectance is to be suppressed, on the coating materials used for their construction, and on the overall optical thickness of the layer system. For example, the calculated average spectral reflectance of a set of six different substrates with refractive indices 1.48, 1.55, 1.60, 1.65, 1.70, and 1.75, when coated with a 0.56-μm-thick, eight-layer antireflection coating designed for the 0.40–0.80-μm spectral region, was 0.34%. This is higher than the average reflectance that is attainable with a conventional antireflection coating of similar optical thicknesses designed for a particular refractive index. However, it is an acceptable value for most applications. With the universal type of antireflection coating described, it is thus possible to coat a number of different refractive-index substrates in one deposition run, and this can result in considerable cost and time savings.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
    [CrossRef] [PubMed]
  2. S. A. Furman, “Broad-band antireflection coatings,” Sov. J. Opt. Technol. 33, 559–564 (1966).
  3. S. A. Furman, N. M. Slotina, “Synthesis of low-reflection coatings in given regions of the spectrum: method of optimization of layer refractive-indices,” Opt. Spektrosk. 51, 96–99 (1981).
  4. E. G. Stolov, “New constructions of interference optical antireflection coatings,” Sov. J. Opt. Technol. 58, 175–178 (1991).
  5. J. A. Dobrowolski, P. Panchhi, M. High, “AR coatings designed for two different infrared substrates,” Appl. Opt. 35, 102–105 (1996).
    [CrossRef] [PubMed]
  6. V. D. Vvedenskii, E. G. Stolov, “Universal constructions of achromatic antireflection coatings,” Sov. J. Opt. Technol. 49, 127–128 (1982).
  7. B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” in Optical Interference Coatings, Vol. 17 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 72–74.
  8. S. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontieres, Gif-sur-Yvette, France, 1992).
  9. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings: I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef] [PubMed]

1996 (2)

1992 (1)

1991 (1)

E. G. Stolov, “New constructions of interference optical antireflection coatings,” Sov. J. Opt. Technol. 58, 175–178 (1991).

1982 (1)

V. D. Vvedenskii, E. G. Stolov, “Universal constructions of achromatic antireflection coatings,” Sov. J. Opt. Technol. 49, 127–128 (1982).

1981 (1)

S. A. Furman, N. M. Slotina, “Synthesis of low-reflection coatings in given regions of the spectrum: method of optimization of layer refractive-indices,” Opt. Spektrosk. 51, 96–99 (1981).

1966 (1)

S. A. Furman, “Broad-band antireflection coatings,” Sov. J. Opt. Technol. 33, 559–564 (1966).

Dobrowolski, J. A.

Furman, S. A.

S. A. Furman, N. M. Slotina, “Synthesis of low-reflection coatings in given regions of the spectrum: method of optimization of layer refractive-indices,” Opt. Spektrosk. 51, 96–99 (1981).

S. A. Furman, “Broad-band antireflection coatings,” Sov. J. Opt. Technol. 33, 559–564 (1966).

S. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontieres, Gif-sur-Yvette, France, 1992).

High, M.

Panchhi, P.

Slotina, N. M.

S. A. Furman, N. M. Slotina, “Synthesis of low-reflection coatings in given regions of the spectrum: method of optimization of layer refractive-indices,” Opt. Spektrosk. 51, 96–99 (1981).

Stolov, E. G.

E. G. Stolov, “New constructions of interference optical antireflection coatings,” Sov. J. Opt. Technol. 58, 175–178 (1991).

V. D. Vvedenskii, E. G. Stolov, “Universal constructions of achromatic antireflection coatings,” Sov. J. Opt. Technol. 49, 127–128 (1982).

Sullivan, B. T.

Tikhonravov, A. V.

Trubetskov, M. K.

Verly, P. G.

Vvedenskii, V. D.

V. D. Vvedenskii, E. G. Stolov, “Universal constructions of achromatic antireflection coatings,” Sov. J. Opt. Technol. 49, 127–128 (1982).

Appl. Opt. (3)

Opt. Spektrosk. (1)

S. A. Furman, N. M. Slotina, “Synthesis of low-reflection coatings in given regions of the spectrum: method of optimization of layer refractive-indices,” Opt. Spektrosk. 51, 96–99 (1981).

Sov. J. Opt. Technol. (3)

E. G. Stolov, “New constructions of interference optical antireflection coatings,” Sov. J. Opt. Technol. 58, 175–178 (1991).

V. D. Vvedenskii, E. G. Stolov, “Universal constructions of achromatic antireflection coatings,” Sov. J. Opt. Technol. 49, 127–128 (1982).

S. A. Furman, “Broad-band antireflection coatings,” Sov. J. Opt. Technol. 33, 559–564 (1966).

Other (2)

B. T. Sullivan, J. A. Dobrowolski, “Implementation of a numerical needle method for thin film design,” in Optical Interference Coatings, Vol. 17 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 72–74.

S. A. Furman, A. V. Tikhonravov, Optics of Multilayer Systems (Editions Frontieres, Gif-sur-Yvette, France, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated spectral reflectances (column 1) and refractive-index profiles (column 2) of four antireflection coatings (rows A–D) suitable for substrates with refractive indices ranging from 1.48 to 1.75. The horizontal lines in column 1 represent the reflectances of the uncoated substrates. Listed in the figures are the merit functions (MF’s) (representing the average reflectance of the six different substrates) and the number of layers and overall thicknesses of the multilayer systems.

Fig. 2
Fig. 2

Sensitivity of the designs of Fig. 1 to thickness errors. Effect of uncorrelated random thickness errors with a standard deviation σ = 1% of the type that might occur with quartz or time monitoring. For each substrate a curve that is the sum of the average reflectance and its standard deviation are shown.

Fig. 3
Fig. 3

Average merit functions of the perturbed layer systems shown in Fig. 2. 67% of the deposited layer systems will lie within the error bars.

Tables (2)

Tables Icon

Table 1 Metric Thicknesses (in Nanometers) of Layers of Systems Depicted in Fig. 1

Tables Icon

Table 2 Dispersion Values Used in the Calculations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ R = ( δ n 2 n S + δ ) 2 .

Metrics