Abstract

Various designs for a hot mirror to improve the efficacy of tungsten lamps are described. These designs were solicited at the 1995 Topical Meeting on Optical Interference Coatings.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Bergman, T. G. Parham, “Application of thin film reflecting coating technology to tungsten filament lamps,” IEE Proc. A 140, 418–428 (1993).
  2. P. Baumeister, “Simulation of rugate filter via a stepped-index dielectric multilayer,” Appl. Opt. 25, 2644 (1986).
    [CrossRef] [PubMed]
  3. A. Thelen, Design of Optical Interference Filters (McGraw-Hill, New York, 1989), Chap. 8, pp. 157–176.
  4. J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
    [CrossRef] [PubMed]

1993 (1)

R. S. Bergman, T. G. Parham, “Application of thin film reflecting coating technology to tungsten filament lamps,” IEE Proc. A 140, 418–428 (1993).

1986 (1)

1978 (1)

Baumeister, P.

Bergman, R. S.

R. S. Bergman, T. G. Parham, “Application of thin film reflecting coating technology to tungsten filament lamps,” IEE Proc. A 140, 418–428 (1993).

Dobrowolski, J. A.

Lowe, D.

Parham, T. G.

R. S. Bergman, T. G. Parham, “Application of thin film reflecting coating technology to tungsten filament lamps,” IEE Proc. A 140, 418–428 (1993).

Thelen, A.

A. Thelen, Design of Optical Interference Filters (McGraw-Hill, New York, 1989), Chap. 8, pp. 157–176.

Appl. Opt. (2)

IEE Proc. A (1)

R. S. Bergman, T. G. Parham, “Application of thin film reflecting coating technology to tungsten filament lamps,” IEE Proc. A 140, 418–428 (1993).

Other (1)

A. Thelen, Design of Optical Interference Filters (McGraw-Hill, New York, 1989), Chap. 8, pp. 157–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral performance of the winning design. T is given in the visible spectrum, and R is given in the IR spectrum.

Fig. 2
Fig. 2

Refractive index as a function of physical thickness of the eight best designs. The physical thickness is relative to the total physical thickness.

Fig. 3
Fig. 3

Frequency of thickness intervals for the designs of Table 1 (physical thickness interval 0–9.99 nm is labeled 0, 10–19.99 is labeled 10, etc.).

Tables (3)

Tables Icon

Table 2 Color Coordinates in Transmission and Reflection

Tables Icon

Table 3 Lowest (Dmin) and Highest (Dmax) Defect Functions after 1000 Cycles of Random Thickness Variations within ±2%a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T vis = ( 320 ) - 1 400 719 T ( λ ) Δ λ ,             Δ λ = 1 nm ,
R ir = ( 1250 ) - 1 750 1998 R ( λ ) Δ λ ,             Δ λ = 2 nm ,
D = 200 - T vis - R ir + exp [ ( L - 50 ) / 50 ] ,
silica             n ^ = 1.46 - j 0 ,
alumina             n ^ = 1.62 - j 0 ,
tantala             n ^ = 2.05 - j 0.0002 ,
titania             n ^ = 2.35 - j 0.0005.

Metrics