Abstract

We developed a procedure for using data for attenuation σ of the marine atmosphere at λ = 0.55 μm and Ångström parameter α in the visible range for the estimation of aerosol particle size spectrum. We evaluated the aerosol microstructure in the marine atmospheric boundary layer (MABL). To eliminate the effect of the upper troposphere and stratosphere, we assumed that the optical characteristics of the microstructure are average for the typical marine atmosphere. The sought-for MABL microstructure is parameterized by the sum of two fractions, each having a log-normal distribution (the fine and large components). The problem amounts to determining six unknown parameters from two characteristics. In accordance with experimental data as well as with theoretical aerosol models, the total particle concentration n and the fraction of the large component c2 are assumed to be constant for the central regions of the world ocean. In this way, the problem can be reduced to the determination of the acceptable value area of the remaining four parameters. For all models situated in this area, values of σ and α fall within some intervals Δσ and Δα, specific for each aerosol type. Since the problem is ambiguous, the number of models comprising an acceptable ensemble is great. So this number is equal to 5972 in the example that illustrates our procedure. It is noteworthy, however, that all the models entering the ensembles have a similar microstructure within the active radius interval of 0.02–3 μm, which is the main interval that governs the transmittance in the 0.3–1 μm spectral range. The average curve that can be plotted for the entire ensemble can be used as a solution to the problem, which is the main result of this study. We are also concerned with how aerosol transmittance measurements in one of the infrared channels could be used to diminish the ambiguity of the problem. The answer depends on the specific aerosol structure. In most cases, additional IR data in one channel barely decreases the ambiguity of the problem. However, such data might be useful for some other distributions. We consider the effect of six IR channels in our example.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).
  2. C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
    [Crossref]
  3. E. P. Shettle, R. W. Fenn, “Models for aerosols in the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979), p. 94.
  4. S. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).
  5. R. McClatchey, M. Bolle, K. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” WCP-112, WMO/TD-NO 24, (World Meteorological Organisation, Geneva, 1986).
  6. G. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols (Deepak Publishing, Hampton, Va., 1991).
  7. H. U. Roll, Physics of the Marine Atmosphere (Academic, New York, 1965).
  8. A. Ångström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geograf. Ann. Deutch 12, 156–166 (1929).
    [Crossref]
  9. K. S. Shifrin, “Simple relationships for the Ångström parameter of disperse systems,” Appl. Opt. 34, 4480–4488 (1995).
    [Crossref] [PubMed]
  10. K. S. Shifrin, “Optical properties of the atmosphere over the ocean,” in Optics of the Air-Sea Interface: Theory and Measurement, L. Estep, ed., Proc. SPIE1749, 151–163 (1992).
  11. V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).
  12. G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
    [Crossref]
  13. V. A. Gashko, K. S. Shifrin, “Variability of the optical characteristics of the Rayleigh atmosphere,” in Optics of the Ocean and Atmosphere, (Elm, Baku, Azerbaijan, 1983), pp. 314–319, in Russian.
  14. W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of atmospheric aerosols: experimental methods and results of measurements,” NRL Report 8703 (Naval Research Laboratory, Washington, D.C., 1983).
  15. W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).
  16. J. W. Fitzgerald, “Marine aerosols,” Atmos. Environ. A 25, 533–545 (1991).
    [Crossref]
  17. A. Tayaraman, B. Subbaraya, “In situ measurements of aerosol extinction profiles and their spectral dependencies at tropospheric levels,” Tellus B 45, 473–478 (1993).
    [Crossref]
  18. J. Lenoble, P. Pruvost, “Inference of the aerosol Ångström coefficient from SAGE short-wavelength data,” J. Climate Appl. Meteorol. 22, 1717–1725 (1983).
    [Crossref]

1995 (1)

1993 (2)

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

A. Tayaraman, B. Subbaraya, “In situ measurements of aerosol extinction profiles and their spectral dependencies at tropospheric levels,” Tellus B 45, 473–478 (1993).
[Crossref]

1991 (1)

J. W. Fitzgerald, “Marine aerosols,” Atmos. Environ. A 25, 533–545 (1991).
[Crossref]

1989 (1)

C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
[Crossref]

1988 (1)

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

1983 (2)

S. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

J. Lenoble, P. Pruvost, “Inference of the aerosol Ångström coefficient from SAGE short-wavelength data,” J. Climate Appl. Meteorol. 22, 1717–1725 (1983).
[Crossref]

1929 (1)

A. Ångström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geograf. Ann. Deutch 12, 156–166 (1929).
[Crossref]

Ångström, A.

A. Ångström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geograf. Ann. Deutch 12, 156–166 (1929).
[Crossref]

Bolle, M.

R. McClatchey, M. Bolle, K. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” WCP-112, WMO/TD-NO 24, (World Meteorological Organisation, Geneva, 1986).

d’Almeida, G.

G. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols (Deepak Publishing, Hampton, Va., 1991).

DeLuisi, J. J.

B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for aerosols in the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979), p. 94.

Fitzgerald, J. W.

J. W. Fitzgerald, “Marine aerosols,” Atmos. Environ. A 25, 533–545 (1991).
[Crossref]

W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).

W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of atmospheric aerosols: experimental methods and results of measurements,” NRL Report 8703 (Naval Research Laboratory, Washington, D.C., 1983).

Forgan, B. W.

B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).

Frick, G. M.

W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).

Gashko, V. A.

V. A. Gashko, K. S. Shifrin, “Variability of the optical characteristics of the Rayleigh atmosphere,” in Optics of the Ocean and Atmosphere, (Elm, Baku, Azerbaijan, 1983), pp. 314–319, in Russian.

Gathman, S.

S. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

Hicks, B. B.

B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).

Hoppel, W. A.

W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of atmospheric aerosols: experimental methods and results of measurements,” NRL Report 8703 (Naval Research Laboratory, Washington, D.C., 1983).

W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).

Ignatov, A. U.

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

Koepke, P.

G. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols (Deepak Publishing, Hampton, Va., 1991).

Kondratyev, K.

R. McClatchey, M. Bolle, K. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” WCP-112, WMO/TD-NO 24, (World Meteorological Organisation, Geneva, 1986).

Korotaev, G. K.

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

Larson, R. E.

W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of atmospheric aerosols: experimental methods and results of measurements,” NRL Report 8703 (Naval Research Laboratory, Washington, D.C., 1983).

W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).

Lenoble, J.

J. Lenoble, P. Pruvost, “Inference of the aerosol Ångström coefficient from SAGE short-wavelength data,” J. Climate Appl. Meteorol. 22, 1717–1725 (1983).
[Crossref]

McClain, E. P.

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
[Crossref]

McClatchey, R.

R. McClatchey, M. Bolle, K. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” WCP-112, WMO/TD-NO 24, (World Meteorological Organisation, Geneva, 1986).

Pruvost, P.

J. Lenoble, P. Pruvost, “Inference of the aerosol Ångström coefficient from SAGE short-wavelength data,” J. Climate Appl. Meteorol. 22, 1717–1725 (1983).
[Crossref]

Rao, C. R. N.

C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
[Crossref]

Roll, H. U.

H. U. Roll, Physics of the Marine Atmosphere (Academic, New York, 1965).

Rusina, E. N.

B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).

Sakerin, S. M.

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

Shettle, E.

G. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols (Deepak Publishing, Hampton, Va., 1991).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for aerosols in the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979), p. 94.

Shifrin, K. S.

K. S. Shifrin, “Simple relationships for the Ångström parameter of disperse systems,” Appl. Opt. 34, 4480–4488 (1995).
[Crossref] [PubMed]

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

V. A. Gashko, K. S. Shifrin, “Variability of the optical characteristics of the Rayleigh atmosphere,” in Optics of the Ocean and Atmosphere, (Elm, Baku, Azerbaijan, 1983), pp. 314–319, in Russian.

K. S. Shifrin, “Optical properties of the atmosphere over the ocean,” in Optics of the Air-Sea Interface: Theory and Measurement, L. Estep, ed., Proc. SPIE1749, 151–163 (1992).

Smirnov, A. V.

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

Stowe, L. L.

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
[Crossref]

Subbaraya, B.

A. Tayaraman, B. Subbaraya, “In situ measurements of aerosol extinction profiles and their spectral dependencies at tropospheric levels,” Tellus B 45, 473–478 (1993).
[Crossref]

Tayaraman, A.

A. Tayaraman, B. Subbaraya, “In situ measurements of aerosol extinction profiles and their spectral dependencies at tropospheric levels,” Tellus B 45, 473–478 (1993).
[Crossref]

Volgin, V. M.

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

Yershov, O. A.

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

Appl. Opt. (1)

Atmos. Environ. A (1)

J. W. Fitzgerald, “Marine aerosols,” Atmos. Environ. A 25, 533–545 (1991).
[Crossref]

Atmos. Ocean. Phys. (1)

V. M. Volgin, O. A. Yershov, A. V. Smirnov, K. S. Shifrin, “Optical depth of the aerosol in typical sea areas,” Atmos. Ocean. Phys. 24, 772–777 (1988).

Geograf. Ann. Deutch (1)

A. Ångström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geograf. Ann. Deutch 12, 156–166 (1929).
[Crossref]

Int. J. Remote Sensing (1)

C. R. N. Rao, L. L. Stowe, E. P. McClain, “Remote sensing of aerosols over the ocean using AVMRR data,” Int. J. Remote Sensing 10, 743–746 (1989).
[Crossref]

J. Atmos. Ocean. Technol. (1)

G. K. Korotaev, S. M. Sakerin, A. U. Ignatov, L. L. Stowe, E. P. McClain, “Sun-photometer observations of aerosol optical thickness over the North Atlantic from a Soviet research vessel for validation of satellite measurements,” J. Atmos. Ocean. Technol. 10, 725–735 (1993).
[Crossref]

J. Climate Appl. Meteorol. (1)

J. Lenoble, P. Pruvost, “Inference of the aerosol Ångström coefficient from SAGE short-wavelength data,” J. Climate Appl. Meteorol. 22, 1717–1725 (1983).
[Crossref]

Opt. Eng. (1)

S. Gathman, “Optical properties of the marine aerosol as predicted by the Navy aerosol model,” Opt. Eng. 22, 57–62 (1983).

Tellus B (1)

A. Tayaraman, B. Subbaraya, “In situ measurements of aerosol extinction profiles and their spectral dependencies at tropospheric levels,” Tellus B 45, 473–478 (1993).
[Crossref]

Other (9)

K. S. Shifrin, “Optical properties of the atmosphere over the ocean,” in Optics of the Air-Sea Interface: Theory and Measurement, L. Estep, ed., Proc. SPIE1749, 151–163 (1992).

V. A. Gashko, K. S. Shifrin, “Variability of the optical characteristics of the Rayleigh atmosphere,” in Optics of the Ocean and Atmosphere, (Elm, Baku, Azerbaijan, 1983), pp. 314–319, in Russian.

W. A. Hoppel, J. W. Fitzgerald, R. E. Larson, “Measurements of atmospheric aerosols: experimental methods and results of measurements,” NRL Report 8703 (Naval Research Laboratory, Washington, D.C., 1983).

W. A. Hoppel, J. W. Fitzgerald, G. M. Frick, R. E. Larson, “Atmospheric aerosol size distributions and optical properties found in the MBL over the Atlantic Ocean,” NRL Report 9188 (Naval Research Laboratory, Washington, D.C., 1989).

R. McClatchey, M. Bolle, K. Kondratyev, “A preliminary cloudless standard atmosphere for radiation computation,” WCP-112, WMO/TD-NO 24, (World Meteorological Organisation, Geneva, 1986).

G. d’Almeida, P. Koepke, E. Shettle, Atmospheric Aerosols (Deepak Publishing, Hampton, Va., 1991).

H. U. Roll, Physics of the Marine Atmosphere (Academic, New York, 1965).

E. P. Shettle, R. W. Fenn, “Models for aerosols in the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1979), p. 94.

B. W. Forgan, E. N. Rusina, J. J. DeLuisi, B. B. Hicks, “Measurements of atmospheric turbidity in BAPMON, and Looking Forward to GAW,” WMO Global Atmosphere Watch Monogr. 94 (World Meteorological Organisation, Geneva, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Areas of acceptable values of the size distribution parameters. (a) For the fine component: 1, group I models; 2, group II models; (b) for the large component: 3, group I models; 4, group II models.

Fig. 2
Fig. 2

Limiting values of particle size distributions that satisfy inequalities (5): 1, - - - -, the lower limit for group I models; 2, – – –, the upper limit for group I models; 3, — — —, the lower limit for group II models; 4,———, the upper limit for group II models; 5, ▬▬, the mean particle size distribution; 6,·····, the relative mean-square error.

Fig. 3
Fig. 3

Histograms for the distribution of models of the spectral attenuation: 1, λ = 0.4 μm; 2, λ = 0.7 μm; 3, λ = 4.5 μm; 4, λ = 8.2 μm; 5, λ = 10 μm; 6, λ = 15 μm; 7, λ = 20 μm; 8, λ = 30 μm.

Fig. 4
Fig. 4

Areas of acceptable values of the size distribution parameters for models having σ falling within intervals 1–3, 3–5, and 5–6 on the abscissa of the histogram in Fig. 3(b) at λ = 4.5 μm. (a) Fine component: 1, interval 1–3; 2, interval 3–5; 3, interval 5–7; (b) large component: 4, interval 1–3; 5, interval 3–5; 6, interval 5–7.

Tables (1)

Tables Icon

Table 1 Modal and Critical Attenuation Values

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n i ( r ) = N c i a ( r s i ) 1 exp { b [ ln ( r / r i ) / s i ] 2 } , i = 1 , 2 ,
σ ( λ ) βλ α ,
α = i c i σ o i α i / i c i σ o i ,
α = α B τ o B τ o + α t τ o t τ o + α s τ o s τ o ,
0 . 9 × 10 4 km 1 cm 3 σ o 1 . 1 × 10 4 km 1 cm 3 , 0 . 3 α B 0 . 5 .

Metrics